Author's Accepted Manuscript

Stress corrosion cracking of a Zr-based bulk metallic glass

Petre Flaviu Gostin, Dimitri Eigel, Daniel Grell, Margitta Uhlemann, Eberhard Kerscher, Jürgen Eckert, Annett Gebert

www.elsevier.com/locate/msea

PII: S0921-5093(15)00582-1

DOI: http://dx.doi.org/10.1016/j.msea.2015.05.049

Reference: MSA32377

To appear in: Materials Science & Engineering A

Received date: 31 March 2015 Accepted date: 15 May 2015

Cite this article as: Petre Flaviu Gostin, Dimitri Eigel, Daniel Grell, Margitta Uhlemann, Eberhard Kerscher, Jürgen Eckert and Annett Gebert, Stress corrosion cracking of a Zr-based bulk metallic glass, *Materials Science & Engineering A*, http://dx.doi.org/10.1016/j.msea.2015.05.049

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Stress corrosion cracking of a Zr-based bulk metallic glass

Petre Flaviu Gostin^a*, Dimitri Eigel^a, Daniel Grell^b, Margitta Uhlemann^a, Eberhard Kerscher^b, Jürgen Eckert^{a,c}, Annett Gebert^a

Abstract

The stress corrosion cracking behaviour of the bulk glassy $Zr_{52.5}Cu_{17.9}Al_{10}Ni_{14.6}Ti_5$ alloy (Vitreloy 105) in 0.01 M $Na_2SO_4 + 0.01$ M NaCl electrolyte was investigated under static three-point bending and anodic potentiostatic control by means of in situ stress and current measurements and subsequent fractography analysis. Pitting takes place preferentially at edges of flat rectangular samples and those pits act as precursors to cracking. Features corresponding to shear banding, mechanical brittle cracking and anodic dissolution assisted cracking were found on the fracture surface. The presence of striations indicates a discontinuous step-wise crack propagation mode. A mechanism is proposed in which crack tip blunting is attributed to shear banding and re-sharpening is attributed to preferential anodic dissolution along shear bands.

Keywords (according to list provided by MSE-A): mechanical characterization; bulk amorphous alloys; casting; fracture; shear bands.

^a Leibniz-Institute for Solid State and Materials Research IFW Dresden, P.O. Box 270116, D-01171 Dresden, Germany

^b Materials Testing, University of Kaiserslautern, Gottlieb-Daimler-Straße, D-67663 Kaiserslautern, Germany

^c Institute of Materials Science, Faculty of Mechanical Science and Engineering, TU Dresden, D-01062 Dresden, Germany

^{*}Corresponding author: Petre Flaviu Gostin, email: f.p.gostin@ifw-dresden.de

Download English Version:

https://daneshyari.com/en/article/7977996

Download Persian Version:

https://daneshyari.com/article/7977996

Daneshyari.com