Author's Accepted Manuscript

Microstructure and Mechanical Behavior of Copper Coated Multiwall Carbon Nanotubes Reinforced **Aluminum Composites**

M. Jagannatham, S. Sankaran, Prathap. Haridoss

www.elsevier.com

PII: S0921-5093(15)00477-3

DOI: http://dx.doi.org/10.1016/j.msea.2015.04.070

Reference: MSA32294

To appear in: Materials Science & Engineering A

Received date: 16 February 2015 Revised date: 22 April 2015 Accepted date: 23 April 2015

Cite this article as: M. Jagannatham, S. Sankaran and Prathap. Haridoss, Microstructure and Mechanical Behavior of Copper Coated Multiwall Carbon Nanotubes Reinforced Aluminum Composites, Materials Science & Engineering A, http://dx.doi.org/10.1016/j.msea.2015.04.070

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Microstructure and Mechanical Behavior of Copper Coated Multiwall Carbon

Nanotubes Reinforced Aluminum Composites

M. Jagannatham, S. Sankaran, Prathap Haridoss*

Department of Metallurgical and Materials Engineering, Indian Institute of Technology,

Madras, Chennai-36.

Abstract

Electroless copper coatings were performed on purified carbon nanotubes (CNT), with

varying deposition time and the optimum deposition time in terms of uniform deposition

was determined to be 45 min. Different amounts of optimized Cu coated CNT (CNT (Cu))

and Al powders were ball milled. CNT (Cu) reinforced Al (Al-CNT (Cu)) composites were

prepared by spark plasma sintering (SPS). Pure CNT reinforced Al (Al-CNT) composites

were also prepared by SPS. The ball milled powders and composites were characterized

using X-Ray diffraction, scanning electron microscopy, Raman spectroscopy, and

transmission electron microscopy (TEM). Microhardness and compression properties of the

composites were measured. TEM images of ball milled powders and composites revealed

uniform distribution of CNT in matrix. Mechanical properties of Al-CNT (Cu) composites

are superior to Al-CNT composites. The maximum enhancement in compressive strength of

Al-CNT (Cu) composites is 154% for 2 wt. % reinforcement; this enhancement is attributed

to the copper coating on CNT surface.

Keywords: Nano structured materials; Composites; Powder Metallurgy; Electron

Microscopy; Mechanical Characterization.

1. Introduction

Download English Version:

https://daneshyari.com/en/article/7978075

Download Persian Version:

https://daneshyari.com/article/7978075

<u>Daneshyari.com</u>