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a b s t r a c t

The concept of surface energy is widely used to understand numerous aspects of material

behavior: fracture, self-assembly, catalysis, void formation, microstructure evolution,

and size-effect exhibited by nanostructures. Extensive work exists on deriving homo-

genized constitutive responses for macroscopic composites—relating effective properties

to various microstructural details. In the present work, we focus on homogenization of

surfaces. Indeed, elucidation of the effect of surface roughness on the surface energy,

stress, and elastic behavior is relatively under-studied and quite relevant to the behavior

of both nanostructures and bulk material where surfaces are involved in some form or

fashion. We present derivations that relate both periodic and random roughness to the

effective surface elastic behavior. We find that the residual surface stress is hardly

affected by roughness while the superficial elastic properties are dramatically altered

and, importantly, they may also change sign—this has significant ramifications in the

interpretation of sensing based on frequency measurement changes. Interestingly, even if

the bare surface has a zero surface elasticity modulus, roughness is seen to endow it with

one. Using atomistic calculations, we verify the qualitative validity of the obtained

theoretical insights. We show, through an illustrative example, that the square of

resonance frequency of a cantilever beam with rough surface can decrease almost by a

factor of two compared to a flat surface.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Surface atoms have different coordination numbers, mechanical, and chemical properties. These differences are
manifested phenomenologically in that the various bulk properties such as elastic modulus, melting temperature,
electromagnetic properties among others are different for surfaces. For example, experiments show that some surfaces
are elastically softer (Goudeau et al., 2001; Hurley et al., 2001; Villain et al., 2002; Sun and Zhang, 2003; Workum and de
Pablo, 2003), while others stiffer (Renault et al., 2003). These differences play an increasing role as the material characteristic
size is shrunk smaller and smaller, e.g., leading to size-dependency in the elastic modulus of nanostructures.

Surface energy effects are usually accounted via recourse to a theoretical framework proposed by Gurtin and Murdoch
(1975, 1978). The surface is treated as a zero-thickness deformable elastic entity possessing non-trivial elasticity as well as
a residual stress (the so-called ‘‘surface stress’’). It is worthwhile to indicate that while fundamentally similar, a parallel
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line of works exists that are more materials oriented: Cahn (1989), Streitz et al. (1994), Weissmuller and Cahn (1997),
Johnson (2000), Voorhees and Johnson (2004), and Cammarata (1994a,b) among others. The reader is referred to an
extensive recent review by Cammarata (2009) on the literature. Steigmann and Ogden (1997) later generalized the Gurtin–
Murdoch theory and incorporated curvature dependence of surface energy, thus resolving some important issues related
to the use of Gurtin–Murdoch theory in the context of compressive stress states and for wrinkling type behavior.
A few recent works have theoretically and atomistically examined the importance of the Steigmann–Ogden generaliza-
tion (see for example, Fried and Todres, 2005; Schiavone and Ru, 2009; Chhapadia et al., 2011a,b; Mohammadi and
Sharma, 2012).

The ramifications of surface-energy related size-effects have been examined in several contexts, e.g., nanoinclusions
(Duan et al., 2005a,b; He and Li, 2006; Lim et al., 2005; Hui and Chen, 2010; Mi and Kouris, 2007; Sharma et al., 2003;
Sharma and Ganti, 2004; Sharma and Wheeler, 2007; Tian and Rajapakse, 2007, 2008), quantum dots (Sharma et al., 2002,
2003; Peng et al., 2006), nanoscale beams and plates (Miller and Shenoy, 2000; Jing et al., 2006; Bar et al., 2010; Liu and
Rajapakse, 2010), nano-particles, wires and films (Streitz et al., 1994; Diao et al., 2003, 2004a,b; Villain et al., 2004;
Dingreville et al., 2005), sensing and vibration (Wang and Feng, 2007; Park and Klein, 2008; Park, 2009), and composites
(Mogilevskaya et al., 2008). The following papers have focused on calculation of surface properties from atomistics:
Shenoy (2005), Shodja and Tehranchi (2010), Mi et al. (2008), Chhapadia et al. (2011a,b), and Mohammadi and Sharma
(2012).

Some recent works are worth mentioning as they provide clarifications and guidance on the theories underlying surface
energy effects, e.g., Ru (2010), and Schiavone and Ru (2009). The papers by Wang et al. (2010a,b) and Huang and Sun
(2007) have pointed out the importance of residual surface stress on the elastic properties of nanostructures and
composites.

Surfaces of real materials, even the most thoroughly polished ones, will typically exhibit random roughness across
different lateral length scales. How are the surface properties renormalized due to such roughness? Can the surface be
artificially tailored to obtain desired surface characteristics? These questions are at the heart of the present paper. We
provide a homogenization scheme for both periodically and randomly rough surface duly incorporating both surface stress
and surface elasticity. Very little work has appeared that addresses effect of roughness on both surface stress and surface
elasticity. Notable exceptions are the following recent works: Wiessmuller and Duan (2008) who focus on deriving the
effective residual stress for the rough surface of a cantilever beam and their follow-up work by Wang et al. (2010a,b) who
generalized it to the anisotropic case. We will briefly comment on their in the Discussion section. One specific difference is
that we also derive effective superficial elasticity constants and not just the residual surface stress. The outline of this
paper is as follows. In Section 2 we briefly summarize the Gurtin–Murdoch surface elasticity theory and formulate the
problem while in Section 3 we present our general homogenization strategy. In Section 4, specializing to the 2D case, we
present results for both randomly and periodically rough surfaces. Discussion of our results is in Section 5 where present
results of our atomistic calculations designed to check the qualitative correctness of the theoretical predictions and point
out the implications for nano-cantilever-beam based sensing.

Notation: We will employ both direct and index notion: vectors and tensors are represented by bold symbols, e.g., a, T,
etc., and in index notation the corresponding components are denoted by ai, Tij, etc., with the canonical basis fe1,e2,e3g

tacitly understood. Summation over repeated index is followed unless otherwise stated. The basis fe1,e2,e3g are also
written as fex,ey,ezg and the associated spatial coordinates are either denoted by ðx1,x2,x3Þ or ðx,y,zÞ. Partial derivatives
with respect to spatial variable xi is sometimes denoted by ð Þ,i. The inner (dot) product between two matrix of the same
size A and B is defined as A � B¼ TrðABT

Þ ¼ ApiBpi.
We also collect some useful relations pertaining to calculus on surfaces. Let B � R3 be a regular simply connected

domain, tn be the unit outward normal on @B (cf. Fig. 1(a)), I be the identity mapping from R3 to R3, and

P¼ I�tn � tn ð1:1Þ

be the projection from R3 to the tangential subspace T :¼ fa 2 R3 : a � tn ¼ 0g at a point p 2 @B. Let j : B-R be a scalar
field, u : B-R3 be a vector field, and T : B-LinðR3,R3

Þ :¼ fM : R3-R3 is linearg be a tensor field. Suppose that j, u, and T

Fig. 1. (a) An elastic body B � R3 with surface @B and unit outward normal tn and (b) the subsurface SC � @B enclosed by a simple contour C with unit

outward normal m within the surface.
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