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a b s t r a c t

In the current intermediate band solar cells made with InAs quantum dots (QDs) in GaAs, the

transitions by absorption of photons between the intermediate band and the conduction band for

illumination normal to the cell surface is very weak or, more often, undetectable. We model the QD as a

parallelepiped potential well and calculate the envelope function of the electron wavefunctions. By

obtaining the dipolar matrix elements we find that, with the present shapes, this absorption is

forbidden or very weak. Deeper QDs with smaller base dimensions should be made to permit this

absorption.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

The intermediate band (IB) solar cell was proposed [1] to
increase the efficiency of solar cells. In an IB solar cell, three
absorption bands can produce electron–hole pair generation: the
VB-CB (VB, valence band; CB, conduction band) transitions (the
only one in single gap cells, i.e. cells unmodified with quantum
dots) and two successive VB-IB and IB-CB transitions. A very
high detailed balance efficiency limit of about 63% versus 41% for
a single junction solar cell was calculated.

Prototype cells have been manufactured by several groups
using InAs quantum dots (QDs) in a GaAs matrix [2–6] with a top
efficiency of over 18% [6]. However, thermal and tunnel escape,
rather than a second photon, are responsible for the IB-CB
transition, also called intraband transition (because in these QDs
the IB is detached from the CB) and, if this happens, the current
will be increased but at the expense of a lower voltage. Two
photons are necessary for thermodynamic reasons if the voltage is
to be higher than the quantum efficiency (QE) threshold [7].

The choice of QDs instead of quantum wells (QWs) is in part to
avoid the continuum of states represented by travelling functions
in the (x, y) plane that might provide an easy thermalization of the
IB and the CB. But further to this, it is known that the IB-CB
transition is forbidden (see for instance [8], p. 155) in QWs for
vertical photons (not so for photons travelling in the (x, y) plane).
That is why the quantum dot infrared detectors (QDIDs) [9] came
in as an attempt to substitute the QWID.

In our QD IB cells, two-photon quantum efficiency (QE)
experiments have been carried out to verify experimentally the
desired mechanism [10] that, although present (in several batches
differing in QD size, composition, etc.), has been found to be very
weak, about three orders of magnitude below the VB-IB, and
only measurable at temperatures below 80 K (when thermal
escape is reduced). The purpose of this paper is to determine
whether there is some fundamental reason that prevents the
desired optical IB-CB transitions. There might indeed be a
technological reason: the IB is not sufficiently doped as to permit
a partial filling of the IB—a condition [1] necessary for the optical
IB-CB transition—but even in cases of proper doping (deter-
mined by capacitive experiments) the two-photon current is
small or undetectable.

2. Eigenfunctions and eigenvalues

In the k �p approximation the wavefunctions of the electrons
in presence of a QD are described by an envelope function that
modulates the periodic part u0(r) of the material Bloch function
(for k¼0) that carries the atomic details. In the case of an
intraband transition the one-band approximation is adequate
[11]; at least for qualitative and semiquantitative analyses. The
envelope function is the eigenfunction of the following Schrödin-
ger equation:
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r

2jþVðrÞj¼ Ej ð1Þ

where m is the effective mass of the electrons in the CB and V(r) is
the minimum of the CB.
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The purpose of this paper is to get a qualitative insight so that
the mathematics will be simplified as much as possible. Thus, in
this equation we are considering a scalar effective mass (spherical
CB minimum) constant everywhere (we take the geometrical
mean of the effective masses of the dot and barrier materials) and
a square potential well whose height is the offset U of the CB
bottom in the QD and host materials. The strain effects and
piezoelectric potentials that are very important in a quantitative
analysis are disregarded here. The shape of the low potential
region (the QD) is usually admitted to be a strongly truncated
[12], squat, quadrangular pyramid but we shall use a shallow
squared box of dimensions 2a, 2b, and 2c.

Later we shall justify the use of the separation-of-variables
method. Thus, we set c(x,y,z)¼a(x)b(y)g(z). Each one-dimen-
sional function must then be the solution of a one-dimensional
Schrödinger equation with a symmetric one-dimensional poten-
tial well. This is a simple problem that can be found in any
quantum mechanics textbook (for the one-dimensional case). We
describe it here to set the nomenclature. In the case of g(z)the
potential will be 0 for 9z9oc and U outside this region. A similar
discussion can be made for the a(x) and b(y) functions. For g(z) the
confined one-dimensional solutions inside the (�c, c) interval will

be the well-known odd (sin(kzz)) or even (cos(kzz)) functions that,
for z4c, have to be matched for function and derivative
continuity with exponential functions of the type exp(�kzz) and

its odd or even symmetrical for zo�c. Calling z2
¼ ð2m=_2

ÞU, we

obtain k2
z ¼ ð2m=_2

ÞEzand k2
z ¼ z2

�k2
z to verify the Schrödinger

equation inside and outside the well. To verify the continuity of

the logarithmic derivative, �tanðkzcÞ ¼ kzc=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2c2�k2

z c2

q
and

cotðkzcÞ ¼ kzc=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2c2�k2

z c2

q
must be fulfilled for odd and even

wavefunctions, respectively. These equalities are represented in
Fig. 1 (with data of one of the cells actually measured). The grey

curve kzc=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2c2�k2

z c2

q
has a vertical asymptote for z2c2 ¼ k2

z c2.

This means that there are a finite number of confined states. The
bigger the well dimension c the further to the right in the figure is
the asymptote located and more solutions (energy levels) appear,
as can be seen by comparing Fig. 1(a) and (b). At the same time,
the bigger the c the smaller the energy interval between energy

levels (because DkzcEp/2 and kzp
ffiffiffiffiffi
Ez

p
).

The eigenfunctions are characterized by their value of kzc.
Symbolically we can label them by a quantum number that will
be 1 for the solution to the left, 2 for the next one, etc. Even
functions correspond to the odd quantum numbers and vice
versa.

Similar arguments can be used for a(x) and b(y).
The eigenvalues of c(x,y,z) are E¼Ex+Ey+Ez–U (we subtract U

to change the energy origin and to set it at the bottom of the host
material CB). Actually, Fig. 1 (a)and (b) are related to the vertical
and horizontal dimensions, respectively. There is one eigenvalue
for the vertical dimension and five for each horizontal dimension,
in total 5�5�1¼25. They are represented in Fig. 2. States with
quantum numbers (u,w,1) and (w,u,1) have same energy. This
degeneracy is removed if the strain field is considered (but the
splitting may be not too strong). Note that confined levels above
the potential well, called virtual bound states VBS, may occur in
three dimensions (never in one dimension) as described in Ref.
[13]. Four levels appear as found experimentally [14] and
theoretically [5] inside the potential well.

If only one of the dimensions is very large, many closely spaced
levels will appear that when the length approaches infinite will
form a continuum, as occurs in quantum wires and wells.

Fig. 1. The two members of the equations �tanðkzcÞ ¼ kzc=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2c2�k2

z c2

q
and

cotðkzcÞ ¼ kzc=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2c2�k2

z c2

q
vs. kzc for U¼0.542 eV, m¼0.0613 times the electron

mass; (a) c¼1.75 and (b) ¼8.5 nm. Red curve for odd and blue for even

eigenfunctions.

Fig. 2. Horizontal lines: confined state energy levels in an InAs QD in GaAs; thick

lines are double degenerated (besides spin degeneracy). Solid/dashed vertical

arrows: strong/weak permitted optical absorptions departing from negative

energy levels. Thick arrows for absorptions departing from the fundamental state.

The energy of an optical phonon is drawn for comparison.
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