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a b s t r a c t

This paper presents analytical conditions of self-equilibrium and super-stability for the

regular truncated tetrahedral tensegrity structures, nodes of which have one-to-one

correspondence to the tetrahedral group. These conditions are presented in terms of

force densities, by investigating the block-diagonalized force density matrix. The block-

diagonalized force density matrix, with independent sub-matrices lying on its leading

diagonal, is derived by making use of the tetrahedral symmetry via group representa-

tion theory. The condition for self-equilibrium is found by enforcing the force density

matrix to have the necessary number of nullities, which is four for three-dimensional

structures. The condition for super-stability is further presented by guaranteeing

positive semi-definiteness of the force density matrix.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Self-equilibrium analysis and stability properties are the two key problems to designing a tensegrity structure, both of
which can be dealt with by investigating the eigenvalues of force density matrix (Zhang and Ohsaki, 2007). In this study,
we analytically decompose the force density matrix into independent sub-matrices (blocks), and then derive the
conditions for their self-equilibrium as well as super-stability, by making use of the high tetrahedral symmetry of the
regular truncated tetrahedral structures.

An example of the structure interested in this study is shown in Fig. 1. This kind of tensegrity structures was invented
by Fuller (1962). The structure consists of 12 nodes and 24 members, including 6 struts in compression and 18 cables in
tension. The cables lie along the edges of a truncated tetrahedron, which is made by cutting off the vertices of a
tetrahedron; and the struts are the diagonals connecting the vertices of the truncated tetrahedron.

There are many other tensegrity structures with tetrahedral symmetry, for example the structures achieved by
truncating the vertices of a truncated tetrahedron using the polyhedral truncation scheme by Li et al. (2010). In this study,
we will concentrate only on the structures with nodes having one-to-one correspondence to the symmetry operations of a
tetrahedral group.

Let p, q, m, and n, respectively, denote number of independent prestress modes, number of infinitesimal mechanisms,
number of members, and number of nodes. For the study of stability of a pin-jointed (truss-like) structure, Calladine
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(1978) presented a modified version of Maxwell’s (1864) rule as follows:

p�q¼m�3nðþ6Þ, ð1Þ

where the number 6 on the right-hand side disappears if rigid-body motions are constrained. The q’s being positive is the
necessary condition for stability of a conventional pin-jointed structure, in the sense of having positive-definite tangent
stiffness.

Tensegrity structures are free-standing, without any support to constrain the rigid-body motions. Thus, for the
tensegrity structure in Fig. 1, Eq. (1) gives

p�q¼ 24�3� 12þ6¼�6, ð2Þ

where the minus sign indicates that the structure cannot be stable, if no prestress is introduced. However, as will be proved
later in this study, the tetrahedral symmetry version of this structure can be stable, and even super-stable, if it contains
proper prestresses. When a structure is said to be super-stable, it is always stable irrespective of material properties as
well as level of prestress (Connelly and Back, 1998; Zhang and Ohsaki, 2007).

The structure has only one mode of prestress; i.e., p¼1, thus, there exists in total seven infinitesimal mechanisms; i.e.,
q¼7. It is this single prestress mode that can stiffen the seven infinitesimal mechanisms to guarantee stability of the
structure.

To find out the prestress mode, Raj and Guest (2006) considered the structures that are of tetrahedral symmetry to
simplify their investigations. Making use of the high symmetry, they derived the symmetry-adapted form of the force
density matrix by a semi-analytical approach, where the matrix is block-diagonalized to have its independent sub-
matrices lying on the diagonal. The curves of solutions, in terms of force densities, are derived and plotted by enforcing the
3-by-3 sub-matrix to be singular. Furthermore, a short discussion on condition for super-stability of this kind of structures
is given based on the plotted solution curves.

For the same problem, Tsuura et al. (2010) conducted self-equilibrium analysis and derived the same solutions. The
analytical condition for self-equilibrium is derived by considering the equilibrium of only one node, due to the high
symmetry. The condition for super-stability has also been presented, though also in a numerical and illustrative way.

In the previous study (Zhang et al., 2009b), the authors presented an analytical formulation for block-diagonalizing
force density matrices of the tensegrity structures that are of dihedral symmetry, via group representation theory. The self-
equilibrium and super-stability investigations significantly simplified, and the derivation of analytical conditions become
possible. The approach has been applied to the prismatic tensegrity structures (Zhang et al., 2009a) as well as star-shaped
tensegrity structures (Zhang et al., 2010), both of which are of dihedral symmetry.

In this paper, we are to extend the approach to the structures with tetrahedral symmetry, to present analytical
conditions for their self-equilibrium and super-stability.

Following this introductory section, the paper is organized as follows: Section 2 describes configuration and symmetry
properties of the structures with tetrahedral symmetry; Section 3 formulates the analytical symmetry-adapted form of the
force density matrix; Section 4 finds the self-equilibrium prestress modes, in terms of force densities; Section 5 presents
the super-stability conditions, also in terms of force densities; Section 6 demonstrates self-equilibrium configurations of
several example structures; and Section 7 briefly concludes the study.

2. Tetrahedral symmetry

Symmetry of a structure can be systematically dealt with by using group representation theory. In particular, the theory
on irreducible representation matrices is important for us to derive the symmetry-adapted form of the force density
matrix, which is used for the implementation of self-equilibrium analysis and stability investigation in the following
sections. Thus, this section gives a brief introduction to tetrahedral group and its irreducible representation matrices. More
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Fig. 1. A tensegrity structure with tetrahedral symmetry. The thinner members are cables in tension, and thicker members are struts in compression. The

cables lie on the edges, and the struts connect the vertices of a regular truncated tetrahedron: (a) top view, (b) side view.
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