
Author's Accepted Manuscript

Shear localization and Its related microstructural evolution in the ultrafine grained titanium processed by multi-axial compression

Bingfeng Wang, Juan Li, Jieying Sun, Xiaoyan Wang, Zhaolin Liu

www.elsevier.com/locate/msea

PII: S0921-5093(14)00759-X

DOI: http://dx.doi.org/10.1016/j.msea.2014.06.042

Reference: MSA31242

To appear in: Materials Science & Engineering A

Received date: 17 April 2014 Revised date: 10 June 2014 Accepted date: 13 June 2014

Cite this article as: Bingfeng Wang, Juan Li, Jieying Sun, Xiaoyan Wang, Zhaolin Liu, Shear localization and Its related microstructural evolution in the ultrafine grained titanium processed by multi-axial compression, *Materials Science* & *Engineering A*, http://dx.doi.org/10.1016/j.msea.2014.06.042

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

CEPTED MANU

Shear Localization and Its Related Microstructural Evolution in the Ultrafine

Grained Titanium Processed by Multi-axial Compression

Bingfeng Wang^{1,2,3,4*}, Juan Li¹, Jieying Sun¹, Xiaoyan Wang¹, Zhaolin Liu¹

1. School of Materials Science and Engineering, Central South University, Changsha

410083, Hunan, People's Republic of China;

2. Department of Mechanical and Aerospace Engineering, University of California,

San Diego, CA 92093, United States of American;

3. Department of Nanoengineering, University of California, San Diego, CA 92093,

United States of American;

4. Key Lab of Nonferrous Materials, Ministry of Education, Central South University,

Changsha 410083, Hunan, People's Republic of China;

*Corresponding author.

Tel.: (858) 900-6320; Fax: (858) 534-7078

E-mail: biw009@ucsd.edu

Postal address: University of California, San Diego, 9500 Gilman Drive, La Jolla, CA

92093

Abstract

Ultrafine grained titanium has unique mechanical properties and attracts

tremendous interest due to its scientific and technological application. Shear

localization (frequently also denoted as adiabatic shear band) is one of the most

important deformation and failure mechanisms for it used at high rate deformation.

Hat shaped specimens are used to induce the formation of an adiabatic shear band

under controlled dynamic conditions. Unstable shear deformation of the alloy emerges

after the true flow stress reaches about 750 MPa, the first vibration peak during the

split Hopkinson pressure bar testing, and the whole deformation process lasts about 50

1

Download English Version:

https://daneshyari.com/en/article/7980810

Download Persian Version:

https://daneshyari.com/article/7980810

<u>Daneshyari.com</u>