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a b s t r a c t

The Eshelby-type problem of an arbitrary-shape polyhedral inclusion embedded in an

infinite homogeneous isotropic elastic material is analytically solved using a simplified

strain gradient elasticity theory (SSGET) that contains a material length scale para-

meter. The Eshelby tensor for a polyhedral inclusion of arbitrary shape is obtained in a

general analytical form in terms of three potential functions, two of which are the same

as the ones involved in the counterpart Eshelby tensor based on classical elasticity.

These potential functions, as volume integrals over the polyhedral inclusion, are

evaluated by dividing the polyhedral inclusion domain into tetrahedral duplexes, with

each duplex and the associated local coordinate system constructed using a procedure

similar to that employed by Rodin (1996. J. Mech. Phys. Solids 44, 1977–1995). Each of

the three volume integrals is first transformed to a surface integral by applying the

divergence theorem, which is then transformed to a contour (line) integral based on

Stokes’ theorem and using an inverse approach different from those adopted in the

existing studies based on classical elasticity. The newly derived SSGET-based Eshelby

tensor is separated into a classical part and a gradient part. The former contains

Poisson’s ratio only, while the latter includes the material length scale parameter

additionally, thereby enabling the interpretation of the inclusion size effect. This SSGET-

based Eshelby tensor reduces to that based on classical elasticity when the strain

gradient effect is not considered. For homogenization applications, the volume average

of the new Eshelby tensor over the polyhedral inclusion is also provided in a general

form. To illustrate the newly obtained Eshelby tensor and its volume average, three

types of polyhedral inclusions – cubic, octahedral and tetrakaidecahedral – are

quantitatively studied by directly using the general formulas derived. The numerical

results show that the components of the SSGET-based Eshelby tensor for each of the

three inclusion shapes vary with both the position and the inclusion size, while their

counterparts based on classical elasticity only change with the position. It is found that

when the inclusion is small, the contribution of the gradient part is significantly large

and should not be neglected. It is also observed that the components of the averaged

Eshelby tensor based on the SSGET change with the inclusion size: the smaller the

inclusion, the smaller the components. When the inclusion size becomes sufficiently

large, these components are seen to approach (from below) the values of their classical

elasticity-based counterparts, which are constants independent of the inclusion size.
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1. Introduction

Eshelby’s (1957, 1959) solution for the problem of an infinite homogeneous isotropic elastic material containing an
ellipsoidal inclusion prescribed with a uniform eigenstrain is a milestone in micromechanics. The solution for the dynamic
Eshelby ellipsoidal inclusion problem was obtained by Michelitsch et al. (2003), which reduces to the Eshelby solution in
the static limiting case. Both of these solutions are based on classical elasticity. Recently, the Eshelby ellipsoidal inclusion
problem was solved by Gao and Ma (2010b) using a simplified strain gradient elasticity theory, which recovers Eshelby’s
(1957, 1959) solution when the strain gradient effect is not considered.

A remarkable property of Eshelby’s (1957) solution is that the Eshelby tensor, which is a fourth-order strain
transformation tensor directly linking the induced strain to the prescribed uniform eigenstrain, is constant inside the
inclusion. However, this property is true only for ellipsoidal inclusions (and when classical elasticity is used), which is
known as the Eshelby conjecture (e.g., Eshelby, 1961; Rodin, 1996; Markenscoff, 1998a,b; Lubarda and Markenscoff, 1998;
Liu, 2008; Li and Wang, 2008; Gao and Ma, 2010b; Ammari et al., 2010).

For non-ellipsoidal polyhedral inclusions, Rodin (1996) provided an algorithmic analytical solution and showed that
Eshelby’s tensor cannot be constant inside a polyhedral inclusion, thereby proving the Eshelby conjecture in the case of
polyhedral inclusions. The expressions of Eshelby’s tensor for two-dimensional (2-D) polygonal inclusions were included
in Rodin (1996). The explicit expressions of the Eshelby tensor for three-dimensional (3-D) polyhedral inclusions were
later derived by Nozaki and Taya (2001), where an exact solution for the stress field inside and outside an arbitrary-shape
polyhedral inclusion was obtained and numerical results for five regular polyhedral inclusion shapes and three other
shapes of the icosidodeca family were presented. Both Rodin (1996) and Nozaki and Taya (2001) made use of an algorithm
developed by Waldvogel (1979) for evaluating the Newtonian (harmonic) potential over a polyhedral body. A more
compact form of the Eshelby tensor than that presented in Nozaki and Taya (2001) for a polyhedral inclusion in an infinite
elastic space was proposed by Kuvshinov (2008) using a coordinate-invariant formulation, where problems of polyhedral
inclusions in an elastic half-space and bi-materials were also investigated. In addition, specific analytical solutions have
been obtained for polyhedral inclusions of simple shapes such as cuboids (e.g., Chiu, 1977; Lee and Johnson, 1978; Liu and
Wang, 2005) and pyramids (e.g., Pearson and Faux, 2000; Glas, 2001; Nenashev and Dvurechenskil, 2010). Also, illustrative
results have been provided for dynamic Eshelby problems of cubic and triangularly prismatic inclusions along with
spherical and ellipsoidal ones by Wang et al. (2005) using their general solution for the dynamic Eshelby problem for
inclusions of various shapes.

However, these existing studies on polyhedral inclusion problems are all based on the classical elasticity theory, which does
not contain any material length scale parameter. As a result, the Eshelby tensors obtained in these studies and the subsequent
homogenization methods cannot capture the inclusion (particle) size effect on elastic properties exhibited by particle–matrix
composites (e.g., Vollenberg and Heikens, 1989; Cho et al., 2006; Marcadon et al., 2007). Solutions for polyhedral inclusion
problems are also important for describing interpenetrating phase composites reinforced by 3-D networks (e.g., Poniznik et al.,
2008; Jhaver and Tippur, 2009) and for understanding semiconductor materials buried with quantum dots that are typically
polyhedral-shaped (e.g., Kuvshinov, 2008; Nenashev and Dvurechenskil, 2010). These materials often exhibit microstructure-
dependent size effects whose interpretation requires the use of higher-order continuum theories.

In this paper, the Eshelby-type inclusion problem of a polyhedral inclusion prescribed with a uniform eigenstrain and a
uniform eigenstrain gradient and embedded in an infinite homogeneous isotropic elastic material is solved using a
simplified strain gradient elasticity theory (SSGET) (e.g., Gao and Park, 2007), which contains a material length scale
parameter and can describe size-dependent elastic deformations. The Eshelby tensor is analytically obtained in terms of
three potential functions, two of which are the same as the ones involved in the counterpart Eshelby tensor based on
classical elasticity. These potential functions, as three volume integrals over the polyhedral inclusion, are evaluated by
dividing the polyhedral inclusion domain into tetrahedral duplexes. Each duplex and the associated local coordinate
system are constructed using a procedure similar to that developed by Rodin (1996) based on the algorithm proposed in
Waldvogel (1979). Each of the three volume integrals is first transformed to a surface integral by applying the divergence
theorem, which is then transformed to a contour (line) integral based on Stokes’ theorem and using an inverse approach
different from those employed in the existing studies for evaluating the two integrals involved in the classical elasticity-
based Eshelby tensor for a polyhedral inclusion.

The rest of this paper is organized as follows. In Section 2, the general form of the Eshelby tensor for a 3-D arbitrary-
shape inclusion based on the SSGET is presented in terms of three potential functions (volume integrals). The expressions
of the SSGET-based Eshelby tensor for a polyhedral inclusion of arbitrary shape are analytically derived in Section 3, which
is separated into a classical part and a gradient part. The averaged Eshelby tensor over the inclusion volume is also
analytically evaluated there. Numerical results are provided in Section 4 to quantitatively illustrate the position and
inclusion size dependence of the newly obtained Eshelby tensor for the polyhedral inclusion problem. The paper concludes
in Section 5.

2. Eshelby tensor based on the SSGET

The SSGET is the simplest strain gradient elasticity theory evolving from Mindlin’s pioneering work. It is also known as
the first gradient elasticity theory of Helmholtz type and the dipolar gradient elasticity theory (e.g., Gao and Ma, 2010a).

X.-L. Gao, M.Q. Liu / J. Mech. Phys. Solids 60 (2012) 261–276262



Download	English	Version:

https://daneshyari.com/en/article/798122

Download	Persian	Version:

https://daneshyari.com/article/798122

Daneshyari.com

https://daneshyari.com/en/article/798122
https://daneshyari.com/article/798122
https://daneshyari.com/

