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a b s t r a c t

When load is applied to fcc nanograins, leading partial dislocations nucleate at grain boundary steps and
propagate into the grain, leaving stacking faults behind. The extent to which these faults expand before a
trailing partial is emitted generally does not equal the equilibrium separation distance of the
corresponding full dislocation. Here we use a density functional theory – phase field dislocation
dynamics model to study the effect of applied stress, 3D grain size, material stacking fault energies,
and grain boundary ledge size on the stress-driven emission of leading and trailing partial dislocations
from a grain boundary. The calculation accounts for the nucleation and glide of leading and trailing
partial dislocations by incorporating the entire material γ-surface into the formulation. We show that the
nucleation stress for a Shockley partial from a grain boundary is controlled by the size of the grain
boundary ledge, scales with the unstable stacking fault energy γU , and is insensitive to grain size. We also
reveal a gigantic γ-surface effect where small changes in γI=μb can lead to large changes in the extent of
the stacking fault region. Last, we find that the stacking fault region increases with grain size and
eventually saturates at larger grain sizes, which our analyses suggest can be attributed to local grain
boundary stresses. These findings can provide insight into transitions in the mechanical behavior of
nanostructured metals.

Published by Elsevier B.V.

1. Introduction

Due to increasing applications for nano-scale devices, the growing
need to ensure reliability and predictive modeling capabilities has
motivated extensive research and discussion on the mechanical
behavior and deformation mechanisms in nano-crystalline materials.
Experimental studies and atomistic simulations have shown that
unlike at the coarse-grained scale, grain boundary driven mechan-
isms, such as grain boundary accommodation, dislocation emission
and absorption at grain boundaries, grain boundary sliding, and
deformation twinning [1–11], become dominant at the nanoscale.
They also find that as grain size reduces to nanoscale dimensions,
partial-mediated slip, and concomitantly stacking faults, become
more prevalent. This grain-size induced transition to partial-
mediated slip from conventional slip in turn alters many elementary
dislocation processes, such as cross-slip, nucleation, lock formation,
and grain boundary mobility [12–16]. For instance, deformation
twinning in nanocrystals can be attributed to the higher propensity
for the formation and glide of partial dislocations [17,10,18,
5,19]. Because of the growing importance of fcc nano-materials in

many technological uses, understanding the intrinsic and extrinsic
conditions under which partial-mediated slip arises are of great
importance.

Molecular dynamics (MD) simulations have shown that when
nano-grains are deformed, the grain boundaries emit and absorb
partial dislocations [1,8,20,6]. Both the leading and trailing partial
dislocations can be produced, with the former partial forming the
stacking fault. The instant the trailing partial is emitted and glides,
the stacking fault produced by the leading partial is removed. Thus
the extent to which the leading partial can glide into the grain
before the trailing partial is emitted is the maximum width of the
stacking fault, denoted here as wmax. In certain cases, the leading
partial is able to propagate to the opposing grain boundary
without the trailing partial being emitted. Then the stacking fault
spans the entire grain cross-section [1], and wmax equals the grain
diameter D. The size of wmax relative to D can be related to the
transition from full- to partial-dislocation mediated plasticity
observed in fcc crystals [21,14].

To date, the conditions that determine the size ofwmax originating
at grain boundaries are not well understood. It has been reported or
proposed that small grain sizes, certain values of stacking fault
energies intrinsic stacking fault energy, SFE, unstable SFE, and/or
large applied stresses favor partial emission and production of wide
wmax [21,14,6,22–24,1]. Furthermore, in most experimental and
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numerical systems studied, many of these factors are coupled. For
instance, higher applied stresses are associated with smaller grain
sizes or with higher unstable stacking fault energies. Such inter-
dependencies have made gaining insight into the conditions that
control the extent of wmax a challenge both experimentally and
numerically.

A number of modeling and simulation techniques have been
used to study the width and the expansion of stacking faults in fcc
metals. MD and density functional theory (DFT), for instance, have
been employed as mentioned; however, the range of grain sizes
and strain rates that can be used to study this phenomena are
limited. As an alternative means, much effort has been invested in
developing analytical models where the dependencies on some of
these factors are given explicitly. Perhaps the most well known
models of this class are those based on dislocation theory, which
include the widening or narrowing of the stacking fault width due
to applied stress [25] and relativistic effects [26–28]. While these
models account for several forces on the partial dislocations (drag,
repulsive elastic forces, attractive stacking fault force) they do not
include the effect of grain size or the presence of grain boundaries.
Continuum scale models for polycrystalline materials have also
been developed for both extended dislocations and grain size
effects [31,30,32–34]. All the above-mentioned analytical models
thus far only include the intrinsic stacking fault energy (SFE) in
their calculations. Yet, it has been emphasized by a number of all-
atom numerical and experimental studies that it is important to
also account for other SFEs, such as the unstable SFE [22,23,35,32].

A relatively new technique for predicting stacking fault beha-
vior in fcc metals is phase field dislocation dynamics (PFDD).
Traditionally phase field methodologies have been used to study
phase transformations in materials. More recently, this energy-
based formulation has been developed to model dislocation glide
and the interactions between dislocations into what is now called
PFDD [36,37]. Over the past decade, PFDD has proven to be capable
of modeling a number of elementary dislocation processes, such as
dislocation nucleation, annihilation, dislocation–dislocation inter-
actions, and dislocation–obstacle interactions [37–40]. In these
formulations, the dislocations modeled were full, not partial,
dislocations. To overcome this limitation, PFDD has been advanced
to model the development of extended dislocations by direct
incorporation of the material γ-surface for defect energy into the
governing free-energy functional [41,36]. In these prior works, the
γ-surfaces were derived from either DFT or MD [41–43]. With an
atomistically informed PFDD, partial dislocation loops, stacking
fault regions, and the dynamic behavior of one or many interacting
dislocations are all natural outcomes. As a testament to its
capability, it has been shown that the DFT-PFDD model can predict
equilibrium stacking fault widths w0 for a wide range of fcc metals
in agreement with available results from DFT or MD alone
[44,41,42]. With an MD-PFDD version, Shockley partial emission
from grain boundaries was studied in nano-sized Ni fcc grains [45].
It was found that the maximum extent wmax was much greater
than w0 and it increased with grain size. This result further
emphasizes the importance of grain size effects on stacking fault
behavior.

In this work, we employ the DFT-PFDD model to understand
the key variables controlling wmax. The variables we choose to
explore here are grain size, grain boundary step sizes, and stacking
fault energies. We show that the threshold stress for partial
emission sth increases with unstable SFE. We also reveal a gigantic
γ-surface effect in which small changes in intrinsic stacking fault
energy γI=μb can lead to large changes in stacking fault expansion.
For a broad range of fcc metals, we show that wmax increases with
grain size to a point of saturation. We present analyses that
suggest that this positive grain size effect may arise from differ-
ences in the internal stress state between smaller and bigger

grains. Specifically we show that the grain boundaries generate a
heterogeneous stress state in their vicinity that contains additional
stress components not present within the grain interior. Thus, in
smaller grains, more of the grain volume is significantly affected
by the stress fields from neighboring grain boundaries.

2. 3D density functional theory-phase field dislocation
dynamics model formulation

In this section we describe the DFT-PFDD model formulation.
First, we present a description of the different energetic contribu-
tions accounted for within the phase field portion (PFDD) of the
model. For further details on the PFDD formulation, we refer the
reader to [37,36,41,38–40]. In the second part of this section, we
discuss integration of PFDD with DFT, which permits modeling of
partial dislocations and extended core regions of full dislocations.

2.1. PFDD formulation

In the crystalline systems of interest here, plastic deformation
is carried out by the motion and interaction of partial and full
dislocations. The PFDD model is formulated to account for these
processes by introducing a scalar phase field variable ζαn ðx; tÞ for
each slip system ðα;nÞ, where α refers to the slip plane and n the
Burgers vector direction. This phase field variable tracks the sign
and the number of dislocations that cross an active slip plane at
position x and time t [37].

In the case of most fcc metals, slip planes and slip directions
belong to the family of f111g〈110〉 slip systems. There are 12
independently oriented slip systems and hence the model has 12
phase field variables. Partial dislocations correspond to the
f111g〈112〉 family of slip systems. A partial dislocation on a given
slip plane can be represented by a linear combination of the phase
field variables on that same plane.

In PFDD, the evolution of dislocation dynamics in the system is
governed by the minimization of the total system energy, E,
according to Ginzburg–Landau [37,38,36]:

∂ζαn ðx; tÞ
∂t

¼ �L
δE

δζαn ðx; tÞ
: ð1Þ

The total energy E is the sum of two energy components: the
elastic energy, Eelas, and the generalized stacking fault energy, Egsfe.
Eelas accounts for both short- and long-range interactions between
dislocations in addition to dislocation interactions with any
externally applied stress. The Egsfe is similar to the Peierls energy
in the sense that it describes the energy needed to move a
dislocation core through the crystal lattice [41,46–48]. Both of
these energy terms can be expressed as functions of the phase
field variables ζ [37,39,41].

The elastic strain energy is related to the difference between
the total strain energy and the plastic strain energy. The phase
field variables ζαn can be directly related to the plastic distortion by
summing over all active slip systems [36,49]:

βp
ijðx; tÞ ¼ ∑

3

n ¼ 1
∑
4

α ¼ 1
bαζαn ðx; tÞδnsαi mn

j ; ð2Þ

where the Burgers vector of each system is defined as bα , and sαi
and mj

n are the slip direction and slip plane normal, respectively.
Finally, δnα is a Dirac distribution supported on the slip plane α
that describes the density of the active slip systems [50].

Using Eq. (2), a Fourier transform and other simplifications, the
elastic energy Eelas can be expressed in terms of the phase field
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