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a b s t r a c t

We describe a systematic approach to design material microstructures to achieve

desired energy propagation in a two-phase composite plate. To generate a well-posed

topology optimization problem we use the relaxation approach which requires homo-

genization theory to relate the macroscopic material properties to the microstructure,

here a sequentially ranked laminate. We introduce an algorithm whereby the laminate

layer volume fractions and orientations are optimized at each material point. To resolve

numerical instabilities associated with the dynamic simulation and constrained

optimization problem, we filter the laminate parameters. This also has the effect of

generating smoothly varying microstructures which are easier to manufacture. To

demonstrate our algorithm we design microstructure layouts for tailored energy

propagation, i.e. energy focus, energy redirection, energy dispersion and energy spread.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The ability to manage energy propagation has received significant interest in the literature as it has applications in
many fields such as impact/blast mitigation, crash worthiness, sound control, earthquake mitigation, etc. It has indeed
been shown that acoustic waves can be redirected by utilizing material heterogeneity and anisotropy (Norris and
Wickham, 2001; Amirkhizia et al., 2010). In this paper, we use topology optimization to systematically design material
microstructures to achieve desired energy propagation. The material microstructure parameters are related to macro-
scopic material properties, i.e. elasticity tensor and mass density, via homogenization theory. Transient finite element
analysis is employed to simulate the energy propagation in macroscopic structures and compute quantities of interests.
Sensitivities of the interested quantities with respect to microstructure parameters are computed analytically via an
adjoint method and used to iteratively update the design parameters by a gradient-based optimization algorithm. To
demonstrate our algorithm, we optimize the material microstructure field of two-phase composite plates, cf. Fig. 1.

In topology optimization two or more material phases are optimally distributed to maximize structural performance, cf.
Bendsøe and Sigmund (2003). Since we are designing anisotropic heterogeneous microstructures in an elastodynamics
paradigm, topology optimization with relaxation via homogenization (Murat and Tartar, 1985; Kohn and Strang, 1986;
Lurie and Cherkaev, 1986; Bendsøe and Kikuchi, 1988; Allaire, 2002; Cherkaev, 2000) is the obvious choice over topology
optimization with restriction, e.g. via a solid isotropic material with penalization (SIMP) model (Bendsøe, 1989; Zhou and
Rozvany, 1991). As such, the anisotropic heterogeneous microstructure is optimized at each material point to obtain the
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most effective use of the constituent materials. This requires knowledge of the G-closure, i.e. the set of achievable
homogenized properties for the given phase volume fractions. Unfortunately, this G-closure set of two isotropic phases is
unknown in linear elasticity (refer to Bendsøe and Sigmund, 2003, p. 275 and bibliographical notes [4,5,25,34] for further
discussion), although bounds on it are known, e.g. the Hashin and Shtrikman (1963) bounds. So instead, one assumes a
specific microstructure and optimizes the parameters describing that microstructure, e.g. layer volume fractions and
orientations in sequentially ranked laminates (Allaire, 2002; Allaire et al., 2004; Olhoff et al., 1998; Jacobsen et al., 1998;
Dı́az and Lipton, 1997), or the dimensions and orientation of a rectangular hole in a square cell (Bendsøe and Kikuchi,
1988; Rodrigues and Fernandes, 1995). Alternatively, one can employ a computationally intensive hierarchical approach
using inverse homogenization to evaluate the optimal microstructure for the given volume fraction at each material point
(Rodrigues et al., 1998, 2002). We use the former, i.e. specific microstructure approach wherein the laminate parameters
are assigned and explicit formula (Allaire, 2002; Murat and Tartar, 1997) are used to obtain the homogenized material
properties. Ultimately we optimize these laminate parameter fields to obtain the desired macroscopic response.

Dynamic response topology optimization based on frequency domain analysis, i.e. free vibration and forced response
using Floquet–Bloch wave theory, has been widely researched to design both micro- and macrostructures. Refer to
Bendsøe and Sigmund (2003) bibliographical note [14] for a comprehensive list of references. For example, inverse
homogenization has been used to design phononic (elastic wave) (Sigmund and Jensen, 2003; Larsen et al., 2009) and
photonic (Cox and Dobson, 2000; Nomura et al., 2009) unit cell microstructures. In other studies multiple materials are
optimally distributed in a macroscopic domain to control wave propagation, e.g. Sigmund and Jensen (2003) for elastic,
and Jensen and Sigmund (2005) and Frei et al. (2005) for electromagnetic applications. On the other hand, topology
optimization for the more computationally intense dynamic structural response based on time domain analysis is less
common, e.g. Min et al. (1999), Turteltaub (2005), and Dahl et al. (2008). Related is the optimization of damping
distribution using Young measure relaxation in Munch et al. (2006). In this paper, the material microstructural field is
optimized to generate the desired time-domain macroscopic energy propagation response.

Our work adopts the relaxation-homogenization topology optimization method (Cheng and Olhoff, 1982; Murat and
Tartar, 1985; Kohn and Strang, 1986; Lurie and Cherkaev, 1986; Bendsøe and Kikuchi, 1988) to design the microstructure
field for optimal macroscopic dynamic responses. At each material point, the laminate parameters for a sequentially
ranked laminate are assigned and explicit homogenization formulae (Allaire, 2002; Murat and Tartar, 1997) are used to
obtain the homogenized material properties. These homogenized properties, together with the trivially computed
homogenized mass density, are used in an explicit finite element analysis to compute the structure’s macroscopic
dynamic response. An analytical sensitivity analysis follows to evaluate the cost and constraint function gradients with
respect to the laminate parameters. Finally, an optimality criteria algorithm (refer to Bendsøe and Sigmund, 2003, pp. 9–10
and bibliographical note [7]) updates the laminate parameters, and the process is repeated until convergence is attained.

The remainder of the paper is organized as follows. Section 2 reviews homogenization theory and its application in
topology optimization. The transient dynamic optimization problem is defined in Section 3, and the sensitivity analysis is
detailed in Section 4. Numerical examples and conclusions are provided in Sections 5 and 6.

2. Homogenization

Most materials, such as steel, are not homogeneous on the microscopic scale, i.e. they contain heterogeneous
microstructures. Nonetheless, since we are seldom interested in the microscopic behavior, and we treat these media as
homogeneous with effective constitutive properties. Indeed, such effective properties are sufficient for computing most
macroscopic responses of interest, e.g. energy and natural frequency.

Effective properties are often obtained by conducting experimental tests on representative samples. However, there are
situations, e.g. in composite material design, where we know the constitutive properties of each constituent. In these
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Fig. 1. Optimization problem overview. The contours indicate the total energy at a particular time instant.
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