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a b s t r a c t

Experimental evidence has illustrated that micropillar deformation is highly stochastic, as the stress–
strain curves are manifested by multiple strain bursts. Although initial theoretical works employing
gradient plasticity can predict the stress–strain response of individual pillars, they cannot capture the
stochastic effects observed for multiple same diameter specimens. This article presents simulations that
are not only in precise qualitative and quantitative agreement with experimental stress–strain curves for
varying diameter pillars, but can also account for the observed stochasticity in same diameter
micropillars. This is accomplished by implementing gradient plasticity within a cellular automaton,
while allowing the yield-stress to randomly vary within the micropillar. In concluding, it is shown that
the aforementioned numerical code can also capture the stress drops and size dependent strengthening
observed in metallic glass nanopillars.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

The stress–strain response of micropillars during compression
is characterized by significant stochastic effects, which are man-
ifested through multiple strain bursts [1–10]. The stress–strain
curves for same diameter pillars differ significantly, however, they
can be enclosed within bounds, and therefore a size effect is noted
[1–4]. Such size effects can be attributed to the significant
dislocation activity and corresponding evolution of strain gradi-
ents that take place during compression, as documented by in-situ
microdiffraction experiments [7–9]. Deformation characteristics of
pillars such as slip zones are also observed through scanning
electron microscopy (SEM) [1,2,10,11].

In order, hence, for a theoretical model to interpret micropillar
compression, it should be able to account for the aforementioned
microstructural characteristics: strain gradients and slip zones.
The authors of [12] accounted for such slip zones by dividing the
micropillar into layers (along the y-direction), which yielded
consecutively (each zone was characterized by its own yield
stress). The resulting boundary value problem was then solved
using gradient plasticity [13–15] and strain bursts were predicted
when two adjacent layers were deforming plastically. The theore-
tical predictions were in very good agreement with the experi-
mental data of [1], since precise fits could be obtained, but

stochastic effects that are inherent to micropillar deformation
were not accounted for. Since, however, stochasticity is a main
characteristic of pillar deformation, it is necessary to employ
appropriate numerical models that can predict statistically differ-
ent stress–strain curves for same diameter pillars. As a first step
Monte Carlo (MC) simulations were used in [3,4] to develop
bounds that could enclose the scattered stress–strain response of
same diameter Al micropillars, however, quantitative agreement
with the experimental curves was not obtained, and the MC
approach cannot account for the underlying microstructure. A
step closer towards capturing the stochastic response of same
diameter pillars was achieved in [16], where the model of [12] was
successfully applied for bounding the stress–strain response of
numerous 6 μm and 2 μm Al pillars.

The novelty of the present contribution concentrates on the
numerical implementation of the constitutive gradient plasticity
model of [12]. It will be shown in the sequel that the stochastic
effects observed in the stress–strain behavior of micropillars are
successfully captured by implementing the gradient formulation of
[12] in a cellular automaton and using a stochastic term to
characterize the yield stress of each layer that the pillar is divided
into. Essentially this allows the yield stress to vary throughout the
pillar. The model is illustrated by relating the simulation predic-
tions directly to the experimental stress–strain curves for 4.9 μm
diameter Ni micropillars (Fig. 1).

In this connection, it should be noted that prior to the
successful application of gradient plasticity in interpreting micro-
pillar compression, several other theories had been proposed to
explain this size-dependent strengthening, and no agreement on
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postulating a unified plasticity theory had emerged [2]. The two
prominent deformation mechanisms that had been proposed were
single-arm source theory [17–19] and dislocation starvation fol-
lowed by surface nucleation first proposed in [20] and subse-
quently corroborated by atomistic simulations in [21–24]. In the
former, the formation of dislocations occurs by the operation of
“partial Frank–Read sources”, or truncated sources, single-arm
sources, and in the latter by surface nucleation of dislocations
once all the pre-existing mobile dislocations have annihilated at
the free pillar surface. While these theories may appear to be
competing, it is likely that they both take place at different pillar
sizes: with single-arm sources strengthening occurring in the

micron-sized pillars down to 100 nm and with dislocation starva-
tion followed by surface nucleation prevailing at the smaller sizes,
deep in the sub-micron regime (below 50 nm).

Hence, in concluding this work, it will be shown that the
proposed numerical implementation of gradient plasticity can
also capture the stochastic stress–strain response of metallic glass
(MG) Zr50Ti16.5Cu15Ni18.5 nanopillars [10], with diameters of
410 nm and 112 nm. Fig. 2 illustrates the formation of shear bands
in an Al86Ni9Y5 MG nanopillar during compression. It can be
seen that stress drops occurred during the development of shear
bands, while upon fracture of the pillar a plateau took place.
This shear band formation indicates the formation of slip zones
within nanopillars during compression, similar to those noted in
micropillars.

The behavior Cu-, Zr-, Al-MG based pillars does not differ much,
aside from the ductility of Al-based MGs being much higher
compared to the rest, for diameters below 320 nm. Hence, based
on the experimental evidence shown in Fig. 2, when modeling
MG-nanopillars above 100 nm, it can be assumed that the pillar
can be divided into layers as the micropillars are. The stochasticity
can be seen in the stress–strain curves (e.g. Fig. 2b) for individual
nanopillars, since multiple stress drops occur throughout com-
pression. Furthermore, size-dependent strengthening has also
been observed as the diameter decreases. Hence in the present
article it will be shown how gradient plasticity implemented in a
cellular automaton simulation can capture both the stochastic
effects in the stress–strain curves, and also the size-dependent
hardening observed in metallic glass nanopillars that are above
100 nm. This is the first time that gradient plasticity is applied for
nanopillar deformation modeling.

2. Modeling micropillar stochasticity

For a material that is characterized by linear hardening after
yielding, a deformation theory version of gradient plasticity leads
to the constitutive differential equation [12]

s¼ Εε for εrsy=E;

βℓ2∂2εp
∂x2 �βεpþs�sy ¼ 0 for ε4sy=E;

(
ð1Þ

where εp is the plastic strain, E is the elastic modulus, β is the
hardening modulus, s and sy are the applied and yield stress,
respectively, and ℓ is the corresponding internal length, which is a
material parameter that comes into play in all gradient theories
and characterizes the underlying microstructure. In these micro-
pillar experiments, the initial portion of the stress–strain curves in
Fig. 1 may not be completely elastic, due to slippage and friction
occurring between the pillar (free on one end) and the indenter. In
applying, therefore, this formulation to micropillars, E does not
correspond to the actual modulus of elasticity, but to an effective
modulus, which is given by the slope of the initial curves in the
stress–strain graphs; i.e. it is the slope of the elastic region, before
any yielding occurs in the pillar.

A schematic representation of the pillar division into layers, in
order to capture the slip zones, is shown in Fig. 3. In the theoretical
model of [12] the top and bottom layers were taken to deform
elastically, while the gauge region was allowed to deform plasti-
cally through sequential yielding of the adjacent discrete slip
zones. However, according to experimental evidence [25] slip
traces and slip lines do not develop sequentially, at adjacent
regions, but “inhomogeneously” depending on the nucleation
and propagation conditions of dislocations. Hence, in the present
implementation all layers in the pillar are allowed to deform
plastically, and their yielding occurs in a random order. Strain
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Fig. 1. Experimental stress–strain curves of Ni micropillars of 4.9 μm diameter [1].
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Fig. 2. (a) Video frames recording the deformation of a ∅490 nm Al86Ni9Y5 MG
taper-free pillar compressed under displacement-control mode in a SEM. Grabbed
video frames (1–8) show the deformation structures before, during and after
compression (white filled arrows indicate the shears). (b) Load–displacement and
time–displacement curves with the vertical black lines (2–5) indicating shear
events. Line 5 corresponds to the time and displacement when pillar has been
broken. The numbers on the d–L curve correspond to the numbers of video frames.
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