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A B S T R A C T

Scanning ion conductance microscopy (SICM) has attracted considerable attention in the biological field as a
noninvasive, high-resolution and non-force contact imaging technology. However, the development of im-
provement to the SICM imaging rate remains a great challenge for applications of rapid or dynamic imaging. In
this paper, a fast SICM imaging method is proposed to improve the imaging efficiency via the design of a
compressive sampling strategy and a reduction in the reconstruction time of sparse signals using the 2D nor-
malized iterative hard thresholding (2D-NIHT) algorithm. The imaging performance of the method is validated
by the simulation of recovery of a random synthetic image, and the superiority of the 2D-NIHT algorithm is also
demonstrated by comparison of its reconstruction performance with that of other typical algorithms. The actual
imaging performance of the method in SICM is also validated by the imaging of two biological samples, a virus
and a living cell, and the results show that the method can duplicate the sample surface topography with high-
definition and shorter imaging time. Our study offers a general imaging method for the applications of scanning
probe microscopies to realize faster and higher-resolution imaging of biological samples.

1. Introduction

Scanning ion conductance microscopy (SICM) is a scanning probe
microscopy technique that uses an electrode inserted in a micropipette
as the probe tip to detect the surface topography of micro-/nano-sam-
ples in aqueous media conduction electrolytes in a non-contact manner.
The SICM technique was invented by Hansma and colleagues in 1989
(Hansma et al., 1989) and was improved by Korchev and colleagues for
application to high-resolution imaging of living biological cells
(Korchev et al., 1997a, b). The SICM technique has been rapidly de-
veloping and is currently applied in many fields, including biological
(Shevchuk et al., 2011), chemical (Ji et al., 2011) and material (Laslau
et al., 2012) science, due to its unique advantages over other scanning
probe microscopies (e.g., atomic force microcopy), such as high-re-
solution imaging, simple probe preparation and absence of damage to
the sample surface (Liu et al., 2013). However, acquisition of a high-
resolution image by SICM requires a few minutes to dozens of minutes,
which restricts its applications in rapid or dynamic imaging, for ex-
ample, monitoring the dynamic changes of living cells.

Progress in improving the imaging speed of SICM has been emerged
in recent reports. For example, L. Liu and colleagues proposed ampli-
tude modulation mode of SICM by employing an AC voltage to enhance
the stability and improve the scanning speed (Li et al., 2015c). P. R.
Unwin and colleagues presented a method that generates a feedback

signal to control the distance between the end of a nanopipette and a
surface by applying an oscillating bias between a quasi-reference
counter electrode (QRCE) in the SICM nanopipette probe and a second
QRCE in the bulk solution, and the method opens up the prospect of
faster SICM imaging (McKelvey et al., 2014). L. Liu and colleagues re-
ported a phase modulation model that modulates the current through
the resistance path via the tip-sample distance to reduce the electronic
and DC drift but maintains high scanning speed (Li et al., 2014b), and
also proposed an in-phase bias modulation mode with a capacitance
compensation method to increase the signal-to-noise ratio of SICM and
improve the scanning speed (Li et al., 2015b). In a word, these methods
can efficiently enhance the stability and imaging speed of SICM, but a
portion of the hardware of SICM must also be improved. In addition,
another type of strategy was also proposed to enhance the scanning
speed. G. Li and colleagues reported a method of compressive sampling
that can acquire a high-resolution image with smaller samples than that
of the Shannon sampling rate based on compressive sensing theory (Li
et al., 2014a). A similar method was also applied to atomic force mi-
crocopy imaging and tremendously improved the observation rate
(Andersson and Pao, 2012; Li et al., 2015a). The strategy enhances the
imaging speed of SICM by designing the movement trajectory of the
probe to acquire the compressive samples within a shorter scanning
time. However, another challenge that compressive imaging faces is
that the reconstruction time of the compressive samples is much too

https://doi.org/10.1016/j.micron.2018.07.007
Received 18 June 2018; Received in revised form 19 July 2018; Accepted 19 July 2018

⁎ Corresponding author.
E-mail address: gxli@jiangnan.edu.cn (G. Li).

Micron 114 (2018) 8–13

Available online 20 July 2018
0968-4328/ © 2018 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/09684328
https://www.elsevier.com/locate/micron
https://doi.org/10.1016/j.micron.2018.07.007
https://doi.org/10.1016/j.micron.2018.07.007
mailto:gxli@jiangnan.edu.cn
https://doi.org/10.1016/j.micron.2018.07.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micron.2018.07.007&domain=pdf


long.
In this paper, we propose a fast SICM imaging method designed to

improve the imaging speed of SICM. The method tremendously reduces
the time needed to collect samples via the design of a compressive
sampling strategy and reduces the reconstruction time of sparse signals
by recovering the reconstruction image directly in matrix domain using
2D normalized iterative hard thresholding (2D-NIHT) algorithm. The
2D compressive sampling strategy can be applied as general method in
actual applications of 2D compressive sensing. The experiments on re-
covery of random synthetic images and imaging for two biological
samples using SICM validate the performance for improved the SICM
imaging efficiency.

2. Method

2.1. 2D compressive sensing model

The compressive sensing theory is formulated as follows. For a k-
sparse signal ∈x RN , which contains no more than k nonzero elements,
a measurement matrix ∈ ×Φ RM N ( <M N ) and an observation vector

∈y RN , then the core problem of compressive sensing can be described
as reconstruction of the sparse signal x from the measurement matrix Φ
and the observation vector y using the following linear equation:

=y Φx. (1)

Eq. (1) is under-determined in that the unique candidate signals x
cannot be acquired for =Φx y. However, many reports demonstrate
that the signal x can still be recovered from Φ and y if the signal x is
sufficiently sparse ≪k N( ) and the measurement matrix Φ satisfies the
restricted isometry property (RIP) condition (Baraniuk, 2007; Candes,
2008).

2D compressive sensing is extended from the above compressive
sensing theory and is formulated as follows. For a 2D K -sparse signal

∈ ×X RN N1 2, where the sparsity K of the 2D signal X is defined as
= ∑ <

=
Spa X x K( ) || ||i

N
i1 0

2 (xi denotes the ith column vector of the
matrix X ), a measurement matrix pair ∈ ×A RM N1 1 and ∈ ×B RM N2 2, and
an observation matrix ∈ ×Y RM M1 1, the problem of 2D compressive
sensing consists of recovery of the 2D sparse signal X using the fol-
lowing equation:

=Y AXB ,T (2)

where BT is the transpose of B, <M M N N, ,1 2 1 2, and < ×K M M1 2 (Li
et al., 2017). In addition, many natural signals are not sparse and they
need be expressed in a convenient basis to transform the signals as
sparse representations. For example, suppose all the image pixels of the
image matrix X have nonzero values, a wavelet transform or a Fourier
transform is used to sparsely represent the X by the equation =X ΨS,
where Ψ is the transform basis and S is the corresponding transform
coefficients. The coefficients offer a concise summary: most coefficients
are small and the relatively few large coefficients capture most of the
information.

The 1D compressive sensing model can be treated as a special form
of the 2D compressive sensing in the case for which = =N M 12 2 .
Moreover, the 2D compressive sensing model is also equivalent to the
1D compressive sensing model by the following operations:

= ⊗ = =Φ B A y vct Y x vct X, ( ), ( ), (3)

where ‘⊗’ is the operation of the Kronecker product, and vct (•) denotes
the vectorization of a matrix by stacking the columns of the matrix into
a single column vector. Thus, we obtain the following:

= ⇔ = = ⊗ × =Y AXB y vct Y B A vct X Φx( ) ( ) ( ) .T (4)

2.2. Compressive sampling strategy of SICM

To apply the 2D compressive sensing theory in SICM imaging, an

effective measurement matrix should be first designed to reduce the
length of the observation signals. In fact, the measurement matrix must
satisfy the RIP condition, and some matrices, such as the Fourier matrix
and Gaussian matrix (Candes and Tao, 2006; Rudelson and Vershynin,
2006), have been proven to satisfy the RIP condition. Specifically, for
the measurement matrix used in compressive sampling of the SICM, any
element of the measurement matrix is either 1 or 0 because for any
pixel of the image acquired by SICM, only two states exist: sampled or
un-sampled. Therefore, the measurement matrix pair of the 2D com-
pressive sensing used in SICM imaging is designed by the following
procedures (Li et al., 2017) :

• Set a matrix ∈ ×D RN N2 1, where each entry dij is either 1 ( =i j) or 0
( ≠i j);

• Randomly select M1 rows of the D to produce the measurement
matrix A ;

• Randomly select M2 columns of the D to produce the measurement
matrix BT .

The measurement matrix pair A and B compress the row and
column of the 2D sparse signal X , respectively, and reduce the number
of samples from the ×N N1 2 dimensions to ×M M1 2 dimensions. To
clearly describe the 2D compressive sampling process, a simple example
is given, as shown in Fig. 1. The Fig.1 shows that the observation matrix
Y can be treated as the set of ×M M1 2 elements collected from the
original 2D sparse signal X at the rows and columns, which are de-
termined by the row position of “1” of A and the column position of “1”
of BT .

With the designed measurement matrix pair, the compressive sam-
pling rate and the location of samples that are collected can be de-
termined. The second problem in compressive imaging of SICM is col-
lection of all samples in the shortest time. In order to achieve this goal,
the scanning strategy should be designed to further decrease the ima-
ging time by optimizing the movement path of the probe over the
shortest distance. Indeed, the design of the scanning strategy is similar
to that of solving a typical traveling salesman problem, in which, given
a list of coordinate points, the scanning strategy must ensure that the
probe visits each point without repetition and using the shortest pos-
sible route. In this study, the ant colony optimization algorithm is used
to solve the optimal route and design the scanning strategy.

2.3. 2D-NIHT algorithm

The 2D-NIHT algorithm is used to efficiently reduce the re-
construction time by recovering the images directly in the matrix do-
main. The purpose of the design of the 2D-NIHT algorithm is to recover
the 2D sparse signal X based on a 2D compressive sensing model (Eq.
(2)), and the problem can be transformed to solve the following opti-
mization problem:

= − + ×
≤

X Y AXB λ Spa X* arg min || || ( ),
Spa X K

T
F

( )
2

(5)

where ||•||F denotes the Frobenius norm of a matrix, that is,
= ∑ ∑= =

X x|| ||F i
N

j
N

ij1 1
21 2 , and λ is the penalty factor. After simplify the

Eq. (5), the optimization problem must solve the following iterative
procedures:

= + −+X H X μ A Y AX B B[ ( ) ],n
K

n n T n T1 (6)

where H X[ ]K is a nonlinear operation that sets all elements of the
matrix X to zero except for the maximum K elements of X in absolute
terms.

Let = =T supp X τ( ) { }n n
ij
n denote the support matrix of X n in which

=τ abs xsgn ( ( ))ij
n

ij
n and xij

n are the entries of the matrices Tn and X n at
ith row and jth column, respectively, and sgn(•) is the signum function.

= = −G g A Y AXB B{ } ( )n
ij
n T T is the negative gradient matrix of

−Y AXB|| ||T
F
2 evaluated at X n at the nth iteration; GTn denotes the
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