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A B S T R A C T

Atomic Force Microscopy (AFM) is one of the most popular and advanced tools for ultra high-resolution imaging
and nanomanipulation of nano-scale matter. But AFM imaging typically takes a long time. High-speed and high-
precision AFM measurement has attracted wide attention in recent several years. In traditional AFM, simple
reduction in the number of measurement points may lose essential sample topography information. To resolve
such problems, an AFM image reconstruction method based on Compressed Sensing (CS) theory is applied to
reduce image acquisition time without cutting down the image quality. The benefit of using CS approach in AFM
is shortening the imaging time, minimizing the interaction with the sample, and finally avoiding sample damage
in AFM. Three kinds of testing samples with high and low frequency components were examined by a scanning
electron microscope (SEM) and by AFM. An orthogonal Matching Pursuit (OMP) algorithm is employed to re-
construct an AFM image with different sampling rates. Subsequently the reconstruction results of sample to-
pography images are analyzed and evaluated. Using the CS approach in AFM can greatly improve the AFM
imaging process. Experimental results show that the obtained reconstructed images have different resolution and
quality, depending on the surface morphology of the sample and sampling rates.

1. Introduction

Atomic force microscopy (AFM) (Binnig et al., 1986; Yacoot and
Koenders, 2008) has had a tremendous impact on the understanding of
science and has been widely used in imaging, metrology and manip-
ulation at the nanometre level since its invention (Han et al., 2011).
Atomic force microscope images can be obtained in both air and the
liquid environment (Qu et al., 2012). However, AFM imaging is also
rather time-consuming because AFM images are traditionally acquired
by using conventional Shannon-Nyquist sampling theory, where each
line is uniformly sampled by a raster scanning which leads to slow
measurement (Ando, 2012). Its slow measurement speed has prevented
expansion of its applications to imaging of dynamic processes. More-
over, because of the interaction between the tip and the sample, the
long time of measuring process would bring sample damage, sample
modification, tip abrasion, tip pollution and image distortion (Han
et al., 2014; Han et al., 2012). It is important to minimize or reduce the
measurement error and the imaging time for any nanoscale application
such as nanofabrication, nano-manipulation and dynamic observation
of biological molecules (Dai et al., 2015; Huang and Andersson, 2013;
Vicary and Miles, 2009). With the precision of surface topography
measurement being of constant concern, it is an enduring objective to
balance the measurement quality and the image acquisition time.

Approaches to high-speed AFM (HS-AFM) can be broadly

categorized into two branches implemented by using software and
hardware to make AFM tip move faster on the sample and improve the
imaging quality. The first is the use of alternative physical designs by
developing new hardware, for example, small cantilevers, micro re-
sonators, scanning stages, scanners with high resonance frequencies,
new actuators and so on (Ando et al., 2008; Fleming and Leang, 2008;
Humphris et al., 2005; Mohammadi et al., 2014; Viani et al., 1999). The
shortcoming of this approach lies in the complicated hardware design
and fabrication, significantly limiting their range of industrial appli-
cations. Meantime there has been not enough commercial hardware
sources in the market. The second targets the controllers and algorithms
such as a combination of feed forward and feedback control algorithms,
robust controllers, and iterative control methods (Carberry et al., 2009;
Clayton et al., 2009; Lu et al., 2015; Salapaka et al., 2002). Such
methods increase costs in AFM measurement, especially bring extra
measurement uncertainty and image distortion. Under all these
methods, images are built pixel-by-pixel by raster scanning the tip on
the sample.

Many other approaches have been proposed to reduce image scan-
ning time and improve AFM measurement accuracy by altering scan-
ning routine and sampling strategies (Chang et al., 2011; Cheng et al.,
2008; Mahmood et al., 2011). More influential factors should be taken
into account, such as scanning time, scanning pattern, interaction be-
tween the sample and tip, abrasion of tip, sample morphology, etc
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(Chen et al., 2013). The application of compressed sensing (CS) was
proposed to improve the imaging rate and accuracy in the context of
surface metrology and AFM measurement (Andersson and Pao, 2012;
Arildsen et al., 2016; Luo and Andersson, 2015a; Luo and Andersson,
2015b; Ma, 2010; Oxvig et al., 2017; Xi et al., 2013). CS is a new type of
sampling theory (Baraniuk, 2007; Donoho, 2006). Compared with the
traditional approach of the well-known Shannon Sampling theorem, CS
is built on a solid mathematics foundation that certain signal can be
reconstructed from what was previously believed to be highly in-
complete information if the signal can be compressed (Baraniuk et al.,
2010; Candes and Wakin, 2008; Oxvig et al., 2014). An obvious benefit
of using CS approach in AFM is that the tip-sample interaction is greatly
reduced.

A series of simulation experiments are established based on the
above ideas. The porous and anodic alumina (PAA) film with more
detailed features and the gratings (TGG1and TGZ3) with more smooth
regions are used as testing objects. Firstly, the target area of sample
surface is scanned by SEM and AFM. Then obtained spare images with
different sampling rates from 0.1 to 0.8 are reconstructed by a greedy
algorithm called Orthogonal Matching Pursuit (OMP) algorithm. In our
work, the sampling rate and reconstruction results of AFM images are
discussed and analyzed. The OMP image reconstruction method with
suitable sampling rates makes a contribution to shortening the ac-
quirement time of images and compressing the image data for high-
accuracy AFM measurement.

2. Compressed sensing in AFM

2.1. Compressed sensing algorithm

Suppose that a real signal x is a length-n signal. If x can be well
approximated using only k coefficients under some linear transform
x = Ψα, it is called k-sparse or compressible. For the mathematical
notation that follows, let Φ= {ϕ1, ϕ2, ..., ϕn} ∈ Rm×n be the measure-
ment matrix whose m-dimensional vectors are all statistically in-
dependent. Combining these vectors to the n-dimensional signal, < ϕ,
x> , a m-dimensional data vector was achieved.

= = =y Φx ΦΨα Aα (1)

Where y ∈ Rm×1 are the observed measurements, Φ is an m × n mea-
surement matrix with m≪ n. Since the process is non-adaptive, the
measurement matrix is selected beforehand. Ψ is an n × n basis trans-
form matrix and α is the sparse representation of the real signal.
A = ΦΨ is an m × n sensing matrix which should satisfy the Restricted
Isometry Property (RIP).

In the general CS case, Φ can be chosen as a random matrix from a
suitable distribution such as random Gaussian and Bernoulli matrices.
However, they are impossible to be applied in the AFM application
because they are dense matrices. Each measurement of CS typically
relies on a linear combination of many elements of the signal. Using a
single probe, the AFM can only measure a single point at a time. This
means that the linear combination cannot be obtained. An identity
matrix with some of its row removed is a good choice in AFM appli-
cation as the measurement matrix Φ. In each row of Φ, there is only a
single one and zeros elsewhere. One possible realizations is:
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Such a measurement matrix ensures that only a single pixel of the
image is required for each measurement. Sampling rate sr can have
impact both on the reconstruction time and the quality of the re-
construction.

=sr m
n (3)

2.2. Orthogonal matching pursuit algorithm

Several exhaustive overviews of CS have been described (Arildsen
et al., 2016; Baraniuk et al., 2010; Oxvig et al., 2014). Here the OMP
algorithm (Sermwuthisarn et al., 2012; Tropp and Gilbert, 2007; Wang
et al., 2012) is briefly presented, which is sufficient to provoke our
approach. Due to the major benefit of speed and ease of implementa-
tion, it is a nice alternative for signal reconstruction as a problem dual
to sparse approximation. The key of the OMP algorithm is to find the
index λt to solve this optimization issue.

Fig. 1. SEM images of testing samples. (a) PAA film.
(b) TGG1 grating. (c) TGZ3 grating.
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