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Abstract

Fluid dynamics are important in processes that grow large crystals from a liquid phase. This paper presents a primer on fluid
mechanics and convection, followed by a discussion of the physics and scaling of flows in such processes. Specific examples of
fluid flows in crystal growth systems are presented and classified according to their impact on outcomes, good or bad. Turbulence
in crystal growth is discussed within the limited extent of our understanding, which is incomplete, or ugly.
© 2016 Elsevier Ltd. All rights reserved.
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1. Introduction

This paper is meant as an introduction toward under-
standing fluid dynamics and the effects that flow can bring
about during the growth of large, single crystals. The title
of this article is chosen in a shameless attempt to attract
your attention by alluding to an epic film of the 1960s,
directed by Sergio Leone and starring Clint Eastwood.
However, this title also means to emphasize that flows
in large-scale crystal growth systems are always impor-
tant and that their effects can be beneficial (good) or det-
rimental (bad). Indeed, one motivation for their study is
to understand their effects so that changes in process
design or operation may produce better outcomes. What
about the “ugly” in the title? Well, please continue reading
to find out …

The literature on flows in crystal growth is vast, and
no attempt will be made to present a comprehensive

summary of it. Some recent reviews on this topic include
those of Derby et al. [1], Kakimoto and Gao [2], Tsukada
[3], Vizman [4], and Capper and Zharikov [5]. In this
paper, we will first focus on some essentials on flows and
their effects, followed by a series of examples of inter-
esting and important flows in crystal growth systems. We
will focus on the growth of single crystals from liquids,
with examples drawn from both solution and melt growth
systems. We will not consider the many, interesting com-
plications that may arise in vapor crystal growth pro-
cesses [6] or during the crystallization of many crystals
in purification operations [7].

2. Background

2.1. A primer on fluid mechanics

While fluid mechanics can become horrendously com-
plicated, it is important to remember that fluids follow
the same, basic kinematic rules that every scientist or en-
gineer learned long ago, namely, Newton’s laws of motion.
We write Newton’s second law backwards (to make the
next equation more clear) as,
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where the bold characters indicate vector quantities. This
simple form is applicable to a rigid body. However, if
we instead imagine a dollop of fluid upon which forces
push and pull, we can carefully shrink it to an infinites-
imal size and re-express the above expression in terms
of the velocity of the fluid,
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where the correspondence between eqs. (1) and (2) should
be readily apparent. To define our nomenclature, ρ is the
density of the fluid, v is the velocity field, t is time, ∇
is the gradient operator representing derivatives over
spatial dimensions x, p is the pressure field, μ is the fluid
viscosity, g is the gravitational vector, β is the thermal
expansivity, T is temperature, and the subscript zero
denotes the reference state about which the linear de-
pendence of fluid density on temperature is approximated.

The first two terms on the right-hand-side of eq. (2)
represent different components of the net force acting
among fluid elements. The pressure field, represented by
the variable p, transmits forces acting normal to an
element, while viscosity transmits forces via shear, i.e.,
momentum transferred by fluid sliding over adjacent el-
ements. This expression arises from the work of Newton,
who postulated that shear stresses are linearly propor-
tional to velocity gradients. Fluids that obey this con-
stitutive relation are referred to as Newtonian fluids.

The terms on the following line are body forces that
act over the volume of the fluid. Gravity alone results
in a hydrostatic pressure field that varies in elevation,
whereas buoyant forces arise from gravity acting over
density differences, represented here by the term involv-
ing β(T − T0). Buoyancy acts as a lever arm, whereby the
net force arises from density differences perpendicular
to the direction of gravity. The expression shown in eq.
(2) arises from the Boussinesq approximation, which rep-
resents changes in density as a linear function of tem-
perature (or composition, which is not shown above). The
last term, F(v, x, t), is a catch-all for additional body forces
that may act on the fluid. Some particularly useful out-
comes can arise from forces of this type, such as Lorentz
effects from the application of a magnetic field to a con-
ducting fluid.

In the process of derivation of the previous equa-
tion, we made an additional, important assumption that

the fluid itself is incompressible, i.e., that its density does
not change appreciably with pressure, an assumption that
is extremely good for a liquid and sometimes reason-
able for a gas. While the above application of New-
ton’s second law to a fluid manifests itself in the
conservation of momentum, we must specify an addi-
tional constraint to guarantee continuity, i.e., the con-
servation of mass. This is written for an incompressible
fluid as,

∇⋅ =v 0. (3)

Collectively, eqns. (2) and (3) constitute the celebrat-
ed Navier–Stokes equations.

2.2. Convection – the effects of fluid flow

A flowing liquid typically has a significant effect on
local temperature and composition via convection, or ad-
vection in some fields. Convection is the transport of heat
(thermal energy) and material (species) by flow. This is
readily seen in the conservation equations derived for the
temperature,

ρ ρC
T

t
Cp p

∂
∂

+ ⋅∇
accumulation of
thermal energy
per unit volume

v TT
convective transport
of thermal energy
through unit volume

== ∇κ 2T ,
conductive transport
of thermal energy
through unit voolume

(4)

where Cp is the heat capacity and κ is the thermal con-
ductivity of the fluid. A more extensive discussion of heat
transfer in melt crystal growth is provided in [8]. A similar
equation is written for species conservation,
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where c denotes species concentration and D is the dif-
fusion coefficient of the species in the fluid.

Fluid dynamics in crystal growth systems are most
often important not because of the momentum carried
by the flow but because of the effects of convection. Spe-
cifically, fluid flows modify heat and species transport
in extremely important ways, and several examples will
be discussed later in this paper.

2.3. Understanding through scaling

Finding analytical solutions to the Navier–Stokes equa-
tions is extremely challenging, and such solutions are gen-
erally available only for very simple systems [9].
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