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A B S T R A C T

We theoretically investigate the localized surface plasmon of graphene in graphene-cavity-coupled waveguide
system with using finite-difference time-domain (FDTD) method and the coupled mode theory (CMT). Cavity
provides the strong light-matter interaction between graphene and light. And strongly confined radiation can be
confined in a thin and finite width graphene. The fermi level of the graphene nanoribbon plays an important role
in tuning the graphene surface plasmon. The faint high-order mode of graphene surface plasmon is also ob-
served. The resonant wavelengths of graphene surface plasmon are almost unaffected by the altering of the
refractive index of the cavity core, susceptibility of the cavity core and intensity of incident light. This paper can
give an insight of the localized surface plasmon properties in graphene system or any other 2D system. And
graphene assisted with cavity is an attractive candidate for designing active graphene plasmonic devices or any
other 2D plasmonic devices.

1. Introduction

Surface plasmons (SPs) are the electromagnetic waves that spread
on the surface of a conductor because of the interaction between the
light waves, electromagnetic field in dielectric and the free electrons of
the conductor [1]. Since the SPs can overcome the diffraction limit and
manipulate light in nanoscale domain, nanodevices have extraordinary
properties, such as high miniaturization and integration. Recently,
surface plasmons pave the way to some important applications in areas
such as sensing [2], waveguides [3,4], absorbers [5–7] and other op-
tical modulators [8,9]. Considering SPs' properties, nanoscale plasmon
resonator system has been illustrated theoretically and experimentally
in recent researches [10,11]. However, very few qualitative descrip-
tions have been showed on graphene surface plasmons (GSPs).

Recently, graphene, a two-dimensional (2D) form of carbon in
which the atoms are arranged in a honeycomb lattice [12], has shown
its promising potentials in photonics and optoelectronic applications
because of its unique band structures of Dirac Fermions. Graphene
provides a suitable alternative to plasmons, because it exhibits much
larger confinement and much longer propagation distances. It is de-
monstrated that the altering of the graphene's physical parameters
[13,14] leads to a dramatic change in optical properties of graphene.
Plasmons in graphene provide more potential for optical applications as

well [15–21]. The distinguishing from other thin materials is that
graphene possess better properties than other thin material. Firstly,
graphene possess extreme electromagnetic confinement. Secondly, the
graphene has relatively low loss. Lastly, graphene has dynamic tun-
ability with fermi level by changing the doping level via the electro-
static or chemical gating. So we consider graphene and not any other
thin film material. Single layer graphene only has the optical absorp-
tivity about 2.3%. With the resonance effect between graphene and
cavity, the absorptivity of graphene can be increased [22]. The ab-
sorption for any other 2D material can also be enhanced due to inter-
action between 2D material and cavity. Like the metal, graphene na-
noribbons (GNR) are expected to play an important role in surface
plasmons. However, it is still a challenge to achieve strong confinement
of the graphene surface plasmons (GSPs).

In this paper, we numerically and theoretically investigate the
propagation of surface plasmons in graphene system. It has strong light-
matter interaction between graphene and light due to the assisted
cavity resonance. The thin graphene can confine radiation in finite
width size. The consistency between the analytical model and the finite-
difference time-domain (FDTD) method validates the feasibility of the
theoretical analysis. Graphene surface plasmons (GSPs) can be effec-
tively tuned by changing the fermi level of the graphene nanoribbon
and the length of graphene-cavity. The graphene modes of graphene
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system have been seldom influenced by the altering of refractive index
of the cavity core, susceptibility χ(3) and intensity of incident light,
while the cavity mode is affected a bit more. The plasmon properties of
graphene system are also discussed here.

2. The model and theoretical analysis

The schematic illustration of graphene system is shown in Fig. 1(a).
The system consists of an MDM waveguide, a cavity and a graphene
nanoribbon. Cavity has the parameters with length L2= 400 nm and
width L1= 100 nm. The position of graphene nanoribbon is in the
center of cavity along y-axis direction. The length of graphene nanor-
ibbon L2 is 400 nm. The permittivity of the silver can be determined by
the Drude model, which defines as = − +∞ −

ε ω ε ω ω iωγ( ) /( ) n
r n rp

2 2 !
! ( ) ! ,

where ω stands for the angle frequency of the incident wave, the di-
electric constant at the infinite frequency =∞ε 3.7, the plasma fre-
quency = ×ω 1.38 10 rad/sp

16 and the damping rate
= ×γ 2.73 10 rad/s13 . The gap w between the MDM waveguide and

cavity is 20 nm. The other structure parameters are the thickness of the
graphene nanoribbon (d=1 nm) [22,23] and the width of waveguide
(w1=100 nm). The graphene is treated as an ultrathin film layer with a
thickness of d. Here, d is not the real thickness of graphene and rea-
sonably set to be 1 nm. The dielectric in the waveguide and cavity is air.
In the mid-infrared spectral region, the optical feature of graphene can
be conveyed by the surface conductivity σgra [22,23]:

= + −σ ω e E π ω τ( ) i /[ ℏ ( i )]fgra
2 2 1 (1)

Here, e is electric charge, ħ is Planck's constant. The lifetime is
τ=(μEf)/(eνf 2), μ is carrier mobility, Ef is fermi level, νf is fermi ve-
locity. The parameters of the graphene are set as νf=106m/s,
μ=1m2/(V.s), and Ef=0.64 eV.

The third-order nonlinear dielectric material is used to fill up the
cavity, whose electric constant can be characterized by ɛd. Under the
nonlinear situation, the dielectric constant ɛk of the kerr material de-
pends on the intensity of electric field, which can be expressed as:
ɛk= ɛd+χ(3)|E|2, where the linear refractive index ɛd is chosen as 1.0.
The third-order nonlinear susceptibility is chosen to be
χ(3) = 10−14 m2/V2, and ɛd= nd2.

The TM-polarized plane wave is emitted from the left port of the
plasmonic waveguide and propagates along x-axis direction. In order to
model the transmission properties of the structure, the method of per-
fect matching layer (PML) boundary condition is adopted.

As the TM-polarized plane waves pass through the MDM waveguide,
the energy can be coupled into the cavity and graphene nanoribbon.
The dynamic transmission characteristics of the proposed structure can
be investigated by the CMT. As shown in Fig. 1(a), the incoming and
outgoing waves in the resonators are depicted by ±S in, and ±S , out. The
subscript ± represent two propagating directions of waveguide as
shown in Fig. 1(a). A1, A2 and A3 denote the energy amplitude of re-
sonant mode 1, resonant mode 2, and resonant mode 3, respectively.

Thus, the energy amplitude of three resonant modes with corre-
sponding frequency =ω i( 1, 2, 3)i can be expressed as
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Where ω λ( )n n (N= 1, 2, 3) is the resonant frequency(wavelength) of
three resonant modes, =τ ω Q1/ /(2 )iN N iN is the decay rate due to in-
trinsic loss in the mode N (N=1, 2, 3), =τ ω Q1/ /(2 )ωN N ωN is the decay
rate due to energy escaping into the MDM waveguide.

= =μ μ ω Q/(2 )c21 31 1 , = =μ μ ω Q/(2 )c12 32 2 and = =μ μ ω Q/(2 )c23 13 3 are
the coupling coefficients among three resonant modes. QiN , QωN are
cavity quality factors related to intrinsic loss and waveguide coupling
loss. Qc = λ λ/Δn n is the quality factor of resonant mode n (n=1, 2, 3).
Thus, we can get the following formulation:
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Using boundary conditions of =−S 0in,
(2) and Eqs. (4)–(5), we finally

achieve the transfer function of the system,
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Where, = − − −γ iω iω τ τ1/ 1/i ω1 1 1 1, = − − −γ iω iω τ τ1/ 1/i ω2 2 2 2,
= − − −γ iω iω τ τ1/ 1/i ω3 3 3 3, =χ iμ e jϕ
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6 32 2. A, B and C denote three dif-
ferent physical parameters. Thus, the transmission coefficient is
T= |t|2. It is evidently that the transmission spectra with the theore-
tical results (black cycles line) are in good agreement with the FDTD
simulations (red solid lines) as shown in Fig. 1(b). The resonant modes
at the resonant wavelengths λ1= 887 nm, λ2= 945 nm and
λ3= 1185 nm are called resonant mode 1, resonant mode 2, resonant
mode 3, respectively.

For the sake of visualizing three resonant modes more clearly, the
distributions of amplitude for electric fields (|Ey|) at the resonant wa-
velengths λ1= 887 nm, λ2= 945 nm and λ3= 1185 nm are depicted
in Fig. 2(a)–(c). It is evidently that the electric field amplitude (|Ey|) at
the resonant wavelength λ1= 887 nm is strongly confined in graphene

Fig. 1. (a) The schematic of graphene system. (b) The transmission spectra with using the FDTD simulation (black circles line) and the CMT theory (red solid line).
(For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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