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A B S T R A C T

In this work, we investigate the geometric phase (GP) for a qubit system coupled to its own anisotropic and
isotropic photonic band gap (PBG) crystal environment without Born or Markovian approximation. The qubit
frequency affects the GP of the qubit directly through the effect of the PBG environment. The results show
the deviation of the GP depends on the detuning parameter and this deviation will be large for relatively large
detuning of atom frequency inside the gap with respect to the photonic band edge. Whereas for detunings outside
the gap, the GP of the qubit changes abruptly to zero, exhibiting collapse phenomenon of the GP. Moreover, we
find that the GP in the isotropic PBG photonic crystal is more robust than that in the anisotropic PBG under the
same condition. Finally, we explore the relationship between the variation of the GP and population in terms of
the physical parameters.

The concept of geometric phase in quantum system was originally
introduced by Berry [1] when he studied the dynamics of a closed quan-
tum system which undergoes an adiabatic cyclic evolution. By relaxing
the superfluous assumptions, such as periodicity and adiabatic evolu-
tion, geometric phase was generalized to a much wider setting: for
a cyclic but non-adiabatic evolution, Aharonov and Anandan proved
the existence of a Hamiltonian independent phase, which is called AA
phase [2]. The classical counterpart, Pancharatnam phase, leads to the
generalization of geometric phase for almost arbitrary unitary evolu-
tion [3,4]. The geometric phase has been observed experimentally in
optical [5], NMR [6,7], and superconducting electronic circuit experi-
ments [8,9]. When the initial state is orthogonal to the final state, the
definition of geometric phase breaks down, and Manini et al. introduced
a complementary concept called off-diagonal geometric phase [10] to
recover the phase information, which was verified by Hasegawa et al. in
the neutron interference experiment [11]. Recently, the renewed inter-
est in the investigation of GP comes from the application of the GP to
implement the logic gates in quantum computation [12]. The purely
geometric nature of the phase makes such computation intrinsically
fault-tolerant and robust against certain types of classical fluctuation
noise [13–17].

The eventuality of preservation is extremely dependent on the
intrinsic properties of the environment that acts on the quantum system.
All realistic quantum systems can never be isolated from the surround-
ing environment completely. Therefore, in most practical cases the
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interaction of a given system with its environments cannot be neglected
and act as sources of decoherence and dissipative which makes to use
the theory of open quantum systems [18]. Thus, it is an important sub-
ject to analyze the quantum decay induced by the unavoidable interac-
tion with the environment. For this reason, the study of open quantum
systems taking into account the effect of the environment on the dynam-
ical evolution of the system of interest has attracted much attention in
the investigations of modern quantum theory, particularly of quantum-
information processing.

On the other hand, in photonic crystals, the periodicity structures
lead to the formation of a PBG [19]. The presence of the PBG in the
dispersion relation of the electromagnetic field results in a series of
phenomena, including the inhibition of the spontaneous emission [20],
strong localization of light [21], and formation of atom-photon bound
states [22]. The GP of a quantum system is a potential resource for
quantum informatics by means of the holonomic quantum computing.
No realistic physical quantum system is in perfect isolation from its
environment, which is essentially present in each laboratory clearly, in
general, spoils the phase. Robustness of the GP with respect to the envi-
ronmental effects is a basic condition for an effective quantum com-
putation. Here, we have examined in detail the GP of a qubit system
coupled to its own anisotropic and isotropic photonic band gap (PBG)
crystal environment without Born or Markovian approximation. We
consider the case of anisotropic and isotropic dispersion of the PBG
crystal and show that the GP is strictly depends on the detuning param-
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eter and it can be considered as a tool for testing and characteriz-
ing the nature effect between the qubit and PBG crystal interaction.
Finally, we highlight the connection between the variation of the GP
and two-level atom excited-state population in terms of the physical
parameters.

The system we investigate is a two-level atom coupled to the radia-
tion in a photonic crystal with isotropic and anisotropic models. In the
rotating-wave approximation, the Hamiltonian for the coupled atom-
field system can be written as

H = ℏ𝜔12𝜎22 +
∑

k
𝜔ka†kak + iℏ

∑
k

gk

(
a†k𝜎12 − 𝜎21ak

)
, (1)

where 𝜎ij = |i⟩⟨j| (i, j = 1, 2) are the atomic operators for a two-
level atom with excited state |2⟩, ground state |1⟩, and resonant
transition frequency 𝜔12. ak and a†k are the annihilation and cre-
ation operators of the radiation field. 𝜔k is the radiation frequency
of mode k in the reservoir, and the atom-field coupling constant
gk =

(
𝜔12d12∕ℏ

)√[
ℏ∕

(
2𝜖0𝜔kV

)]
êk.ûd is assumed to be independent of

atomic position with the fixed atomic dipole moment ⃖⃗d12 = d12ûd. V is
the sample volume, êk is the polarization unit vector of the reservoir of
mode k, and the Coulomb constant is 𝜖0. In the single photon sector,
the wave functions of the system have the form

𝜓1 = |2⟩⊗∏
k

|0k⟩,
𝜓k = |1⟩⊗ |1k⟩∏

k′≠k
|0k′⟩, (2)

where the ket |0k⟩ indicates that the field mode k is a vacuum state. |1k⟩
denotes that the field mode k is in the first excited state. The unexcited
state

𝜓0 = |1⟩⊗∏
k

|0k⟩ (3)

is not coupled to any other state.
The general state vector could be written as

𝜓(t) = q0𝜓0 + q1e−i𝜔21 t𝜓1 +
∏

k
qke−i𝜔kt𝜓k (4)

in terms of the states (2) and (3) and insert this into the Schrödinger to
obtain the following set of coupled equations:

q̇1 = −i
∑

k
gke−iΩktqk (5)

q̇k = −igke−iΩktq1, (6)

with detuning frequency Ωk = 𝜔k − 𝜔12. By integrating (6) with the ini-
tial condition qk(0) and substituting the result into (5), we take the time
involving equation of the excited-state probability amplitude

q̇1 = −∫
∞

0
d𝜏G(t − 𝜏)q1(𝜏) (7)

with the memory Kernel G(t − 𝜏) =
∑

k g2
k e−iΩk(t−𝜏) which presents the

delay Green’s function of the problem. Thus, we could obtain the atomic
reduced density matrix as

𝜌(t) =

(
𝜌22(0)|q(t)|2 𝜌21(0)q(t)

𝜌12(0)q∗(t) 𝜌11(0) + 𝜌22(0)
(
1 − |q(t)|2)

)
. (8)

The atomic state dynamics is depends only on the function q(t), whose
explicit time dependence contains the information about the environ-
ment spectral density and coupling constant. This shows that the form
of the GP does not explicitly depend on the particular choice of the envi-
ronment but only on the Hamiltonian model of (1) and on the chosen
of initial states.

To calculate the GP for the qubit undergoing non-unitary evolution,
we use the gauge invariant expression derived in Ref. [23]

Φ = arg

(∑
k

√
𝜒k(0)𝜒k(𝜏)𝜏⟨𝜔k(0)|𝜔k(𝜏)⟩e− ∫ 𝜏0 dt⟨𝜔k(t)|�̇�k(t)⟩

)
, (9)

where 𝜒k(t) and |𝜔k(t)⟩ are the eigenvalues and corresponding eigen-
kets of the reduced density matrix 𝜌(t). One may view the GP factor
defined in Eq. (9) as a weighted sum over the phase factors pertain-
ing to the eigenkets of the reduced density matrix. Thus the detail of
expression for the geometric phase would depend on the digitalization
of the reduced density matrix (8).

The object of our study, the evaluate the GP, could be obtained by
solving (9). Here we consider as environment the case of anisotropic
and isotropic PBG crystals with dispersion relation 𝜔k. In an anisotropic
dispersion model, appropriate to fabricated PBG materials, we associate
the band edge with specific point in k-space, 𝐤 − 𝐤0. By preserving the
vector character of the dispersion expended about 𝐤0, both direction
and magnitude of the band edge wave-vector are modified. This gives a
dispersion relation of the form [24]

𝜔𝐤 ≈ 𝜔c + A
(
𝐤 − 𝐤0

)2
, (10)

where A is a model-dependent constant, 𝜔c is the upper band-edge
frequency and 𝐤0 is a specific wave vector related to the point-group
symmetry of the dielectric material. 𝛿 = 𝜔12 − 𝜔c is the detuning of
the atomic frequency with respect to the band-edge frequency and
𝛼 ≈ 𝜔2

12d2∕[8𝜔c𝜖0(𝜋A)3∕2 ] is a constant that depends on the nature of
the band-edge singularity. Using the Laplace transform, we get

q(t) = 𝜀
{
𝜆+ei𝜆2

+t
[
1 + Φ

(
𝜆+ei𝜋∕4

√
t
)]

− 𝜆−ei𝜆2
− t
[
1 + Φ

(
𝜆−ei𝜋∕4

√
t
)]}

,

(11)

where

𝜀 = ei𝛿t√
𝛼2 − 4𝛿

,

𝜆+ = (−𝛼 +
√
𝛼2 − 4𝛿)∕2,

𝜆− =
(
−𝛼 −

√
𝛼2 − 4𝛿

)
∕2,

and Φ is the error function. The parameter 𝛼2 scales the time evolution
and for large times (𝛼2t) one has q(t) → const., that is, an asymptotic
population trapping.

Let us now consider the case of an environment as zero-temperature
three-dimensional periodic dielectric with isotropic photon dispersion
relation 𝜔k [25,26]. The dispersion relation near the band edge 𝜔c can
be given by

𝜔k = 𝜔c + D(k − k)2, (12)

where D ≅ 𝜔c∕k2. This dispersion relation is isotropic since it depends
only on the magnitude k of the wave vector 𝐤. In that case, the explicit
form of q(t) can be obtained as

q(t) = 2a1x1e𝛽x2
1 t+i𝛿t + a2(x2 + y2)e

𝛽x2
2 t+i𝛿t

−
3∑

j=1
ajyj

[
1 − Φ

(√
𝛽x2

j t
)]

e𝛽x2
j t+i𝛿t

, (13)

where

x1 =
(
A+ + A−

)
ei𝜋∕4 (14)

x2 =
(
A+e−i𝜋∕6 − A−ei𝜋∕6) e−i𝜋∕4 (15)

x3 =
(
A+ei𝜋∕6 − A−e−i𝜋∕6) ei3𝜋∕4, (16)
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