Accepted Manuscript

Electron transport in NH₃/NO₂ sensed buckled antimonene

Anurag Srivastava, Md. Shahzad Khan, Rajeev Ahuja

PII: S0038-1098(18)30006-1

DOI: 10.1016/j.ssc.2018.01.006

Reference: SSC 13366

To appear in: Solid State Communications

Received Date: 16 June 2017

Revised Date: 26 December 2017

Accepted Date: 9 January 2018

Please cite this article as: A. Srivastava, M.S. Khan, R. Ahuja, Electron transport in NH₃/NO₂ sensed buckled antimonene, *Solid State Communications* (2018), doi: 10.1016/j.ssc.2018.01.006.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Electron Transport in NH₃/NO₂ Sensed Buckled Antimonene

Anurag Srivastava¹*, Md. Shahzad Khan¹ and Rajeev Ahuja²

¹Advanced Materials Research Group, CNT Lab, ABV-Indian Institute of Information Technology and Management, Gwalior (M.P.) 474015

²Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala

SE-75120, Sweden

*corresponding author email: profanurag@gmail.com

Abstract

The structural and electronic properties of buckled antimonene have been analysed using density functional theory based ab-initio approach. Geometrical parameters in terms of bond length and bond angle are found close to the single ruffle mono-layer of rhombohedral antimony. Inter-frontier orbital analyses suggest localization of lone pair electrons at each atomic centre. Phonon dispersion along with high symmetry point of Brillouin zone does not signify any soft mode. With an electronic band gap of 1.8eV, the quasi-2D nano-surface has been further explored for NH₃/NO₂ molecules sensing and qualities of interaction between NH₃/NO₂ gas and antimonene scrutinized in terms of electronic charges transfer. A current-voltage characteristic has also been analysed, using Non Equilibrium Green's function (NEGF), for antimonene, in presence of incoming NH₃/NO₂ molecules.

Keywords: Antimonene, sensor, DFT, Adsorption energy, Bandstructure, Transmission Spectra

Download English Version:

https://daneshyari.com/en/article/7987912

Download Persian Version:

https://daneshyari.com/article/7987912

Daneshyari.com