ELSEVIER

Contents lists available at ScienceDirect

## **Solid State Communications**

journal homepage: www.elsevier.com/locate/ssc



#### Communication

# Solid-solid synthesis and structural phase transition process of SmF<sub>3</sub>



Qi-Cao Yan, Xing-Min Guo

School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China

#### ARTICLE INFO

Communicated by P. Sheng

Keywords: Transition Samarium trifluoride Hexagonal Orthorhombic

#### ABSTRACT

Mazes of contradictory conclusions have been obtained by previous researches about structural phase transition process of SmF<sub>3</sub>. In this paper, the single crystals of SmF<sub>3</sub> (hexagonal and orthorhombic) were prepared by solid-solid synthesis, which have shown gradual changes in crystal growth modes with the increase temperature and holding time. Furthermore, we propose the phase transition process of in SmF<sub>3</sub>. Hexagonal symmetry of SmF<sub>3</sub> (space group *Pnma*) was prepared firstly by heating  $Sm_2O_3$  and  $NH_4HF_2$  over 40 min at 270 °C. And then orthorhombic symmetry of  $SmF_3$  (space group *P63mc*) was obtained by heating hexagonal symmetry over 10 h at 650 °C. The reaction of  $SmF_3$  (hexagonal) =  $SmF_3$  (orthorhombic) is extremely sluggish at a low temperature (less than 650 °C), which was seen as a Mixed Grown Region.

#### 1. Introduction

In the recent years, a number of studies have been devoted to samarium trifluoride crystals, which are especially well known because of its luminescence and catalytic properties [1-3]. The properties make it very attractive for synthesizing various kinds of chemical products, but these strongly dependent on the crystal structure of SmF3, which is important to understand if one is aiming to obtain a single phase of SmF<sub>3</sub> with good qualities [4-7]. In general, the SmF<sub>3</sub> compound is known with two polymorph modifications: hexagonal and orthorhombic phase that affords a different crystal structure, which is crucial for various applications [8-10]. Rotereau and Spedding reported that the single orthorhombic phase of SmF3 was obtained by cooling of pure melt, and the orthorhombic SmF3 crystal exhibits at room temperature while the hexagonal one at high temperature. The transition temperature was determined to be 495 °C [11,12]. Greis et al. investigated that SmF<sub>3</sub> was obtained by wet method and dehydration was then carried out in a stream of HF/N<sub>2</sub> at 1000 K. The presence of the orthorhombic phase at room temperature and the first-order transition to the rhombohedral phase around 480 °C and an additional transition at higher temperature (727 °C), giving rise to hexagonal phase [13]. However, Zalkin et al. reported that the hexagonal SmF3 crystal was prepared by wet method at a low temperature (100 °C–150 °C), and then compounds with hexagonal and orthorhombic symmetry was formed after a high temperature heat treatment (1000 °C-1400 °C) for 1 h [4]. Cao et al. reported that the hexagonal SmF3 crystal was obtained by solid-solid synthesis at 300-400 °C for 4 h [7]. Wang et al. reported that the hexagonal SmF<sub>3</sub> crystal was obtained by wet method and the compounds with hexagonal and orthorhombic symmetry was formed by heat treatment [14]. It is difficult to think through these mazes of contradictory conclusions. So no answer has been obtained to give this question for structural phase transition process of  $SmF_3$ .

With the aim of answering this question, the solid-solid synthesis is used to prepare the single phase of  ${\rm SmF_3}$  in this study, which can observe precisely gradual changes in crystal growth modes of  ${\rm SmF_3}$  and help people better understand the structural phase transition process of  ${\rm SmF_3}$  due to no effect of aqueous solution condition like pH value. Phase identification was carried out by X-ray diffraction (XRD), and studied the refinement structure of these samples by Rietveld analysis. Jade6.0 software was used for calculating the grain size of  ${\rm SmF_3}$ . The microstructure of  ${\rm SmF_3}$  was characterized by transmission electron microscope (TEM). A possible structural phase transition process of  ${\rm SmF_3}$  was proposed.

#### 2. Experimental

Raw materials were fine-grained  $\rm Sm_2O_3$  and  $\rm NH_4HF_2$ , produced by the Sinopharm Chemical Reagent Co., Ltd., which were both analytical reagents with nominal purities of 98.0 and 98.5 pct, respectively. Samples were prepared by mixing the compounds of  $\rm Sm_2O_3$  and  $\rm NH_4HF_2$  (1:8 mol ratio) together. And then the mixtures were pressured into pellets with diameter of 8 mm using a pressure of 5 MPa. The shaped samples were placed into a horizontal electric furnace. The furnace was closed, and nitrogen flow with 500 mL/min was used to take gaseous

E-mail addresses: yanqicaoustb@sina.com (Q.-C. Yan), guoxm@ustb.edu.cn (X.-M. Guo).

<sup>\*</sup> Corresponding author.

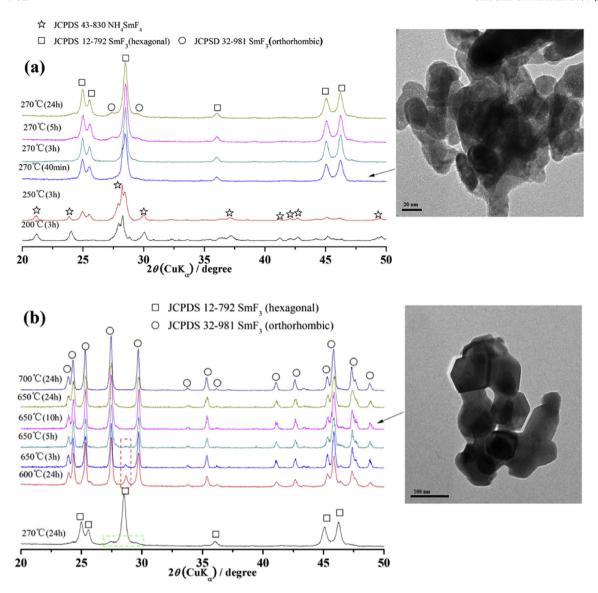



Fig. 1. XRD patterns and TEM micrographs of samples were obtained. (a) Compounds with  $Sm_2O_3$  and  $NH_4HF_2$  (1:8) versus temperature from 200 to 270 °C. (b) The hexagonal and orthorhombic  $SmF_3$  crystal versus temperature from 270 to 700 °C.

products ( $NH_3$ ,  $H_2O$ ) and provide an inert atmosphere, and then passed through an absorbed gas bottle (aqueous solution of KOH) for avoiding harmful gas pollution to laboratory environment.

The phase composition of samples was identified using an X-ray diffraction (XRD) with CuK $\alpha$  radiation (Rigaku D/max-A, Tokyo, Japan). XRD data for Rietveld analysis were collected at 25 °C over a  $2\theta$  range  $10^\circ-90^\circ$  with a step interval of  $0.02^\circ$  and a counting time of 2 s per step. The diffraction data were refined using the GSAS program of the Rietveld analysis. Diamond software was used for drawing the crystal structures of single phase of SmF $_3$ . The grain size of SmF $_3$  was calculated by the Jade6.0 using X-ray diffraction patterns as data sources, which is based on the Debye-Scherrer equation [15].

$$D = \frac{K\lambda}{\beta COS\theta} \tag{1}$$

Where D is grain size (nm); K is a constant; K denotes the wavelength of K-ray (nm); K represents the half-value breadth, K=(B $^2$ -b $^2$ ) $^{1/2}$  in which K is an original half-value breadth of the diffracted peak; K0 designates diffraction angle (rad). Si powder was used as a standard sample for eliminating the effect of equipment, which

 $b=0.14468-1.7859\times 10^{-3}\cdot (2\theta)+1.7148~\times~10^{-5}\cdot (2\theta)^2.$  The <code>microstructures</code> of these samples were observed with TEM (JEM-2010, JEOL, Japan).

### 3. Results and discussion

Compounds with  $Sm_2O_3$  and  $NH_4HF_2$  (1:8) versus temperature from 200 to 270 °C, in which the XRD patterns and TEM micrograph of samples are shown in the Fig. 1 (a).  $NH_4SmF_4$  is known as the intermediate product in the preparation process (Eq. (2)). No  $NH_4SmF_4$  is observed in the XRD patterns measured between 40 min and 24 h at 270 °C. It means that the  $NH_4SmF_4$  is vanished at 270 °C, when the holding time exceeded 40 min, as shown in the following Eq. (3).

$$Sm_2O_3 + 5NH_4HF_2 = 2NH_4SmF_4 + NH_3 + 2NH_4F + 3H_2O$$
 (2)

$$NH_4SmF_4 = SmF_3 + NH_3 + HF \tag{3}$$

In the meantime, the peaks of orthorhombic  $SmF_3$  crystal (circle) were appeared, when the holding time exceeded 5 h, it agrees with the results of Wang et al. [14], who determined that the hexagonal  $SmF_3$  crystal was formed firstly at low temperature, and then transited into the

## Download English Version:

# https://daneshyari.com/en/article/7987935

Download Persian Version:

https://daneshyari.com/article/7987935

<u>Daneshyari.com</u>