
Thermal quantum Fisher information in quantum dot system

K. Berrada a,b,nQ1

a Al Imam Mohammad Ibn Saud Islamic University (IMSIU), College of Science, Department of Physics, Riyadh, Saudi Arabia
b The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, Miramare-Trieste, Italy

a r t i c l e i n f o

Article history:
Received 2 August 2013
Received in revised form
25 October 2013
Accepted 14 December 2013
by A. Pinczuk

Keywords:
A. Quantum dot system
B. Parameter estimation
D. Fisher Information
D. Total quantum correlation

a b s t r a c t

Using the quantum Fisher information (QFI), we investigate the problem of the parameter estimation in
quantum system dot (QDS) including the effects of different parameters. We find that the QFI is affected
by the strength temperature and might be finite even for higher temperatures in the asymptotic limit.
Furthermore, we show that there is an optimal value of temperature such that the precision of the
parameter estimation is maximal and that revivals and retardation of information loss may occur by
adjusting the initial conditions. Finally, we show that this quantity may be proposed to detect the
amount of the total quantum information that a QDS state contains with respect to projective
measurements.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

QFI, which detects the sensitivity of the state variation with
respect to changes in a parameter estimation, is one of the most
quantity for both quantum estimation theory and quantum infor-
mation theory. Parameter estimation is a significant pillar of
different branches of science and technology, and developed
new techniques in measurement for parameter sensitivity that
has often led to scientific breakthroughs and technological
advancement. In the field of quantum estimation, the main task
is to determine the value of an unknown parameter labeling the
quantum system, and primary goals are to enhance the precision
of resolution. There is a great deal of work on phase estimation
addressing the practical problems of state generation, loss, and
decoherence [1–6]. Fisher information lies at the heart of a
parameter estimation theory that was originally introduced by
Fisher [7]. QFI, which characterizes the sensitivity of the state with
respect to changes in a parameter, is a key concept in parameter
estimation theory. It provides in particular a bound to distinguish
the members of a family of probability distributions. When
quantum systems are involved, especially for problems in which
the quantity of interest is not directly accessible, the optimal
measurement may be found using tools from quantum estimation
theory. The quantum version of the Cramér–Rao inequality has
been established and the lower bound is imposed by QFI [8].

Hence, the QFI becomes the key problem to be solved. An abstract
quantity that measures the maximum information about a para-
meter ϕ that can be extracted from a given measurement procedure.

Actually, an important goal in solid-state quantum physics is to
enhance the amount of the resolution. The motivation behind this
quest comes both from the fact that parameter estimation for
electrons in a solid-state structure has not yet been proved and
from the recent experimental progress in the field of quantum
information processing in these systems, which has, among other
things, led to experimental realization of single and two-qubit
manipulations of electron spin qubits in quantum dots [9–11] and
coherent control of spins in diamond [12]. Many aspects of these
quantum systems, such as hyperfine coupling to the nuclear spins
[13,14], the spin blockade [15,16], implementation of the singlet–
triplet qubit by confining two electrons in QD systems in a two-
dimensional electron gas (2DEG) located below the surface of
a GaAs–AlGaAs heterostructure [17], and the effects of applying
a slanting magnetic field [18] are currently active topics of research.
Here, we will address this problem by calculating the QFI in an
isolated quantum dot, electron–electron interaction at the mean field
level, in terms of different parameters of the QDS involved in the
thermal state for different ranges of the temperatures. Such a system
can be employed to perform logical operations, which can be used to
implement a universal quantum information and computation.
Furthermore, we show that the QFI may be proposed to measure
the amount of the total quantum correlation that a QDS state
contains with respect to projective measurements.

This paper is structured as follows. In Section 2, we present a
review of the QFI and define the different steps of the interfero-
metric scheme. Furthermore, we give the methodology for studying
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the precision of the parameter estimation in the QDS. In Section 3,
we present the model for the QDS and describe the dependence on
different input parameters. In Section 4, we present the related
major results with discussion. Section 5 is devoted to the compar-
ison between the QFI and the quantum discord in QDS. We
conclude our work in Section 6.

2. Quantum Fisher information

We first present a brief review of the QFI. A crucial goal of
quantum estimation is to archive the best observable. For example,
in order to estimate the true value of parameter θ provided that
the system is in one state of the family fρθg, an observable θ̂ is said
to be the unbiased estimator, that is, the expectation of the
estimator should satisfy Trðρθθ̂Þ ¼ θ and in general the estimator
θ̂ is not unique. We can quantify how accurately a state can
measure an unknown parameter with the QFI associated with
quantum Cramér–Rao (QCR). QFI is defined as

FQ ¼ Tr½ρθL2�; ð1Þ
where ρθ is the density matrix of the system, θ is the parameter to
be measured, and L is the symmetric logarithmic derivation given by

∂ρθ
∂θ

¼ 1
2
½LρθþρθL�; ð2Þ

where the QFI does not depend on the particular choice of Lρθ .
The QCR inequality has been formulated, in which the bound is

asymptotically archived by the maximum likelihood estimator as
well as the classical theory,

ΔθZ ðΔθQCRÞ ¼
1ffiffiffiffiffiffi
FQ

p Z
1ffiffiffiffiffi
L2

p ; ð3Þ

where ðΔθÞ2 is the mean square error in the parameter θ. The
above inequality defines the principally smallest possible uncer-
tainty in the value of the parameter estimation. The measurement
uncertainty Δθ is quantified through the units corrected, root-
mean deviation of the estimate parameter θ from its true value

Δθ¼ θest
jd〈θest〉θ=dθj

�θ: ð4Þ

Consider in general a readout on the probe described by a POVM
with one parameter family of the elements EðξÞZ

dξEðξÞ ¼ 1: ð5Þ

Let pðξjθÞ ¼ trðEðξÞρθÞ be the measured probabilities from the
various outcomes of the POVM when the true value of the
measured parameter is θ. The QFI is given by [19,20]

FQ ¼max
fEðξÞg

F ð6Þ

where F is the classical Fisher information computed by the
probability distribution for the measurement outcomes

F ¼
Z

dξ trðEðξÞL2ρθÞ ¼ trðL2ρθÞ ¼ 〈L2〉: ð7Þ

The maximization in Eq. (6) is over all possible readout procedures
(POVMs) on the probe. Such a maximization is indeed a daunting
task and even if it can be done, implementing the POVM that
maximizes the Fisher information, thereby minimizing the mea-
surement uncertainty, may, in all likelihood, be impossible to
implement in the laboratory. The classical Fisher verified the
inequality [19,20]

Fr
Z

dξ tr
EðξÞρθ

trðEðξÞρθÞ

� �
� trðEðξÞL2ρθÞ ð8Þ

leading to

FQ ¼
Z

dξ trðEðξÞL2ρθÞ ¼ trðL2ρθÞ ¼ 〈L2〉: ð9Þ

and the second inequality in (3) is saturated. This inequality
circumvents the maximization problem by placing an upper bound
on FQ in terms of the expectation value of the square of the
symmetric logarithmic derivative operator L. This expectation
value can be computed directly from the initial state of the probe
and its parameter dependent dynamics, independent of the read-
out procedure.

We choose to compare the precision of the parameter estima-
tion for the QDS state using this widely accepted approach of QFI.
The interferometric set-up generally consists of four steps. The
first is the preparation step where the input state is chosen as an
isolated electron state, ρint in the QDS (here the isolated electron is
assumed to be a qubit system). Then, a singlet-qubit phase gate is
applied, given by

Uθ≔jg〉〈gjþeiθje〉〈ej: ð10Þ
The outcome state is obtained as the output during a uniform
process, ρout ¼ UθρintU

†
θ . After the phase gate operation, the output

mixed state ρoutðϕÞ is finally measured for the estimation of phase
uncertainty.

The entangled N-qubit states have been proposed as means to
beat the so-called shot-noise limit accuracy in parameter estima-
tion [21,22]. Indeed, if the parameter θ appears in the transforma-
tion Uθ , one can measure by subjecting a system in an initial state
ρint to the unitary operator Uθ . The QCR inequality provides a lower
limit to the accuracy of estimation in terms of the inverse of the
square of the QFI associated with the generator of the unitary
transformation and the state of the system. Now, if ρin is a
separable state, the QFI scales as O(N) with the number of particles
in the system, N, while it may scale faster for entangled ρint.

3. Quantum dot system

We consider a quantum dot where the charging energy EC is
the largest energy scale of the problem, which is the experimen-
tally relevant situation. For a dot with completely broken spatial
symmetries such as a lateral quantum dot, random matrix theory
applies and the single-particle energy levels εn are statistically
distributed following a Wigner–Dyson ensemble. On the average,
the mean level spacing δE is much smaller than EC. Furthermore,
we take into account intradot exchange interactions that favor
ferromagnetic configurations if the dot electron number is even,
similar to the Hund0s rule in atomic physics. The strength of this
interaction, ES40, satisfies ES5δE5EC . Then, the quantum-dot
universal hamiltonian reads [23]

Hdot ¼∑
ns
εnd

þ
nsdns�ESS

2
tot�EzS

zþECðN�N0Þ ð11Þ

where N¼∑nsd
†
nsdns is the total number of electrons in the dot and

N0 can be adjusted with a nearby gate voltage [24]. In what
follows, we assume that the dot is tuned into a Coulomb-blockade
valley with an even integer electron number ðN0 ¼ 2Þ. Hence, we
label the two active orbital levels with n¼ �1 and n¼ þ1. For
ES5δE, the dot total spin,

S¼ 1
2
∑
nss0

d†nssss0d
†
ns0 ð12Þ

is 1/2 for N odd and 0 for N even. However, since δ¼ εþ1�ε�140
can be random, a singlet–triplet transition will occur when ES of
the order of δ. Alternatively, δ can be controlled using an externally
applied magnetic field acting on the electronic orbital motion.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

K. Berrada / Solid State Communications ∎ (∎∎∎∎) ∎∎∎–∎∎∎2

Please cite this article as: K. Berrada, Solid State Commun (2014), http://dx.doi.org/10.1016/j.ssc.2013.12.016i

http://dx.doi.org/10.1016/j.ssc.2013.12.016
http://dx.doi.org/10.1016/j.ssc.2013.12.016
http://dx.doi.org/10.1016/j.ssc.2013.12.016


Download English Version:

https://daneshyari.com/en/article/7988140

Download Persian Version:

https://daneshyari.com/article/7988140

Daneshyari.com

https://daneshyari.com/en/article/7988140
https://daneshyari.com/article/7988140
https://daneshyari.com

