Intermetallics 54 (2014) 232-241

Contents lists available at ScienceDirect

Intermetallics

journal homepage: www.elsevier.com/locate/intermet

Mechanisms of Cr segregation to $C11_b/C40$ lamellar interface in (Mo,Nb)Si₂ duplex silicide: A phase-field study to bridge experimental and first-principles investigations

Intermetallics

Toshihiro Yamazaki ^a, Yuichiro Koizumi ^{b, *}, Koretaka Yuge ^c, Akihiko Chiba ^b, Koji Hagihara ^d, Takayoshi Nakano ^e, Kyosuke Kishida ^c, Haruyuki Inui ^c

^a Department of Materials Processing, Tohoku University, 6-6-02 Aoba Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan

^b Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-0011, Japan

^c Department of Materials Science and Engineering, Kyoto University, Sakyo, Kyoto 606-8501, Japan

^d Department of Adaptive Machine Systems, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan

^e Division of Materials and Manufacturing Science, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan

ARTICLE INFO

Article history: Received 12 March 2014 Received in revised form 24 May 2014 Accepted 27 May 2014 Available online 16 July 2014

Keywords: A. Intermetallics B. Alloy design D. Interfaces E. Phase field modeling G. Energy systems

ABSTRACT

Cr segregation at lamellar interfaces in the MoSi₂/NbSi₂ duplex silicide was examined using a newly developed phase-field model to elucidate the mechanism of interfacial segregation, which is believed to improve the thermal stability of lamellar structures as well as creep resistance. This is because lamellar structures can improve the high-temperature strength, and the stabilization of the lamellar structures improves creep resistance. The model takes into account the segregation energy determined using firstprinciples calculations to reflect the chemical interaction between the solute atoms and the interface, in addition to the elastic interaction. Cr segregation occurs at the interface when the segregation energy is considered, whereas no segregation occurs in the case where only the elastic interaction is considered. However, the extent of segregation was much smaller than that observed experimentally when the segregation energy was evaluated using first-principles calculations without considering lattice vibrations (i.e., the calculations were performed for 0 K). A simulation that took into consideration the segregation energy with the lattice vibrations at 1673 K resulted in segregation similar to that observed experimentally, where the Cr-added MoSi₂/NbSi₂ duplex silicide was equilibrated at 1673 K, namely, the temperature at which the segregation energy was calculated. Thus, it was revealed that the soluteinterface chemical interaction and its temperature dependence are responsible for the interfacial segregation of Cr. These results suggest that the segregation energy needs to be taken into account in the search for more effective additive elements for improving the thermal stability of lamellar structures as well as the creep resistance.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Owing to its high melting temperature, low density, and good thermal-conductivity [1], MoSi₂ with a C11_b-structure (Fig. 1a) has attracted attention as a refractory material for gas power generation systems, which involve at ultrahigh-temperatures, where Ni-based superalloys cannot withstand. Monolithic MoSi₂ exhibits good plastic deformability at low temperatures, owing to the operation of several slip systems. However, its fracture toughness at low temperatures and strength at high temperatures are

insufficient [2–5]. There have been many studies aiming to improve the mechanical properties of MoSi₂ by forming composites with other materials. For instance, MoSi₂–based composites with ceramics such as Al₂O₃ and SiC exhibit improved high-temperature strengths. However, they exhibit poor thermal shock resistance and low-temperature toughness [6,7]. As another approach, reinforcing MoSi₂ by combining it with another silicide has been receiving attention [8–10]. Disilicides with C40structure (Fig. 1b) are attractive for reinforcing the MoSi₂ matrix, as they exhibit anomalous strengthening and higher strength than does MoSi₂ [11–14]. Recently, Nakano et al. [9,10] developed MoSi₂/NbSi₂ duplex crystals with fine and well-oriented lamellar microstructures as a new promising candidate material to

^{*} Corresponding author. Tel.: +81 22 215 2452; fax: +81 22 215 2116. E-mail address: koizumi@imr.tohoku.ac.jp (Y. Koizumi).

overcome the above-mentioned problems. The highly oriented lamellar composed of a C11_b-type Mo-rich phase and a C40-type Nb-rich phase, could be developed in the alloy, which had a nominal composition of Mo_{0.85}Nb_{0.15}Si₂, by unidirectional solidification using the floating-zone-melting method. This involved the growth of the C40 phase single crystals and subsequent annealing at the dual-phase temperatures. The obtained duplex crystals with oriented lamella exhibited superior hightemperature mechanical properties [15] and improved lowtemperature fracture toughness [16,17]. The lamellar structure was relatively thermally stable [10]. However, the lamellar structure coarsened and collapsed after prolonged annealing. Thus, the thermal stability of the lamellar structure needs to be improved further in order for the composite to be suitable for practical use. It was recently found that additive elements such as Cr and Zr drastically improve the thermal stability of lamellar structures in the MoSi₂/NbSi₂ duplex silicide [18,19]. For instance, the lamellae in the (Mo_{0.85}Nb_{0.15})_{0.97}Cr_{0.03}Si₂ alloy remain well defined for more than 336 h. It is believed that the improvement in the thermal stability of the lamellar structure is due to the decrease in the lattice misfit at the C11_b/C40 lamellar interface resulting from Cr segregation. That Cr segregation at the interface has already been proved through scanning transmission electron microscopy (STEM) and energy dispersive X-ray spectroscopy (EDS) [18]. It has been suggested that Cr segregation changes the value of the lattice parameter in the vicinity of the lamellar interface, thus reducing the lattice misfit and improving the planarity and thermal stability of the lamellar structures [19]. However, the suggested mechanism of Cr segregation at the $C11_{\rm b}/$ C40 interface has not yet been proven. Further, the quantitative relationship between the extent of Cr segregation and the change in the lattice misfit remains unclear. In addition, it remains to be clarified whether Cr is the most suitable additive element for stabilizing the lamellar structure in MoSi₂/NbSi₂.

The phase-field method is a versatile technique for simulating the microstructural evolution and interfacial segregation in various materials on the basis of thermodynamics and the diffuse interface concept. Thus far, we have applied the phase-field method to study the microstructural evolution and segregation at interfaces such as stacking faults [20], twin boundaries [21], and antiphase boundaries [22]. In particular, this method has been used for quantitative investigations of interfacial segregation, which are difficult to be performed experimentally. The objective of this study was to elucidate the factors dominating the mechanism of interfacial segregation of additive elements in MoSi₂/NbSi₂ duplex silicide by using the phase-field method.

2. Method

2.1. Phase-field model

As illustrated in Fig. 1a and b, both the C11_b tetragonal structure and the C40 hexagonal structure consist of two sublattices, that is, a transition metal (TM) sublattice (represented by the red spheres) and a Si sublattice (blue spheres). Although a small number of Si atoms can occupy the TM sites, this number is negligibly small [23]. Therefore, for the sake of simplicity, it is assumed that no antisite atoms are formed, that is, Si atoms cannot occupy the TM sites and vice versa. The C11_b and C40 structures may appear guite different from one another, but the atomic arrangement within an atomic layer on the (110) plane of the $C11_b$ phase and that on the (0001) plane of the C40 phase are nearly identical (Fig. 1c, d). The difference between the two crystal structures is in the sequence of the stacking layers. That is to say, the C11_b structure exhibits ACAC-type stacking whereas the C40 structure shows ABDABD-type stacking. Coherent lamellar interfaces are formed parallel to the (110)_{C11b} and $(0001)_{C40}$ planes [10,24]. Six types of lamellar interfaces with different interconnecting layers can be formed. A previous study based on first-principles calculations had indicated that the interface with the stacking sequence of ... DABDAB|ACAC has the lowest interfacial energy.

Fig. 1. Unit cells of (a) C11_b-structure and (b) C40-structure. Large balls show transition metals (Mo or Nb atoms) and small ones show Si atoms. Atomic arrangements on (c) (110)plane of C11_b-phase and (d) (0001)-plane of C40-phase, which are parallel to the C11_b/C40 lamellar interface.

Download English Version:

https://daneshyari.com/en/article/7988604

Download Persian Version:

https://daneshyari.com/article/7988604

Daneshyari.com