

Contents lists available at SciVerse ScienceDirect

Intermetallics

Physical properties of the V-Al₅Cu₆Mg₂ complex intermetallic phase

M. Klanjšek^{a,b}, S. Jazbec^a, M. Feuerbacher^c, J. Dolinšek^{a,b,*}

- ^a J. Stefan Institute, University of Ljubljana, Faculty of Mathematics and Physics, Jamova 39, SI-1000 Ljubljana, Slovenia
- ^b EN-FIST Centre of Excellence, Dunajska 156, SI-1000 Ljubljana, Slovenia
- ^c Institut für Festkörperforschung, Forschungszentrum Jülich, Jülich D-52425, Germany

ARTICLE INFO

Article history: Received 17 January 2013 Received in revised form 13 March 2013 Accepted 15 March 2013 Available online 13 April 2013

Keywords:

- A. Intermetallics, miscellaneous
- B. Electrical resistance and other electrical properties
- B. Thermal properties
- B. Thermoelectric properties

ABSTRACT

The cubic V-Al₅Cu₆Mg₂ phase with 39 atoms in the unit cell is an intermetallic phase with intermediate structural complexity between the simple Laves phase and the complex Bergman phase. Using ²⁷Al NMR spectroscopy, we have determined the electric-field-gradient tensors at the positions of three crystallographically nonequivalent Al sites in the unit cell and confirmed the local site symmetries of these sites, as predicted by the Samson structural model of the V-phase from 1949. The influence of structural complexity on the physical properties of a solid was studied by determining bulk electrical and thermal properties (electrical resistivity, thermoelectric power, Hall coefficient, thermal conductivity and specific heat) and local electronic properties of the V-Al₅Cu₆Mg₂ monocrystal by studying the ²⁷Al NMR Knight shift and the spin-lattice relaxation rate. The experiments reveal that free-electron picture is good approximation to the V-Al₅Cu₆Mg₂ electronic structure, despite the structural complexity of the lattice. The positive thermopower and Hall coefficient reveal that V-Al₅Cu₆Mg₂ is a hole-type electrical conductor. Electrical resistivity shows linear temperature dependence with a positive temperature coefficient, typical of regular metals and alloys. The relatively large $T \to 0$ residual resistivity and the low thermal conductivity suggest the presence of quenched structural disorder, very likely intrinsic to the V-Al₅Cu₆Mg₂ structure. We did not find any experimental evidence of a pseudogap close to the Fermi energy in the electronic density of states that could contribute to the electronic stabilization of the structure.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

"Complex metallic alloys" (CMAs) denote intermetallic phases with giant unit cells comprising some hundred up to many thousands of atoms [1]. The giant unit cells with lattice parameters of several nanometers provide translational periodicity of the CMA crystalline lattice on the scale of many interatomic distances, whereas on the atomic scale, the atoms are arranged in clusters with polyhedral order, where icosahedrally coordinated environments play a prominent role. The structures of CMAs show duality; on the scale of several nanometers, CMAs are periodic crystals, whereas on the atomic scale many of them resemble quasicrystals (QCs) [2]. The high structural complexity of CMAs together with the two competing physical length scales—one defined by the unit-cell parameters and the other by the cluster substructure—may have

E-mail address: jani.dolinsek@ijs.si (J. Dolinšek).

a significant impact on the physical properties of these materials, such as the electronic structure and lattice dynamics.

Examples of CMAs are the cubic NaCd $_2$ with 1152 atoms per unit cell (u.c.) [3,4], the cubic β -Al $_3$ Mg $_2$ (1168 atoms/u.c.) [5–7], the heavy-fermion compound YbCu $_4$.5 (7448 atoms/u.c.) [8], and the cF(23, 256-x)-Al $_5$ 5.4Cu $_5$ 4.4Ta $_3$ 9.1 phase of unprecedented complexity, comprising more than 23,000 atoms in the unit cell [9]. These giant unit cells contrast with elementary metals and simple intermetallics whose unit cells comprise from a few up to a few tens of atoms only, raising the question why nature sometimes chooses structural complexity instead of simplicity.

Recently, we succeeded to grow centimeter-size monocrystals of the V-phase Al₅Cu₆Mg₂ (V-Al₅Cu₆Mg₂). The structure of this CMA has been reported by Samson in 1949 [10], but we could not find any other literature report on this compound, neither regarding validation of the structural model nor on its physical and chemical properties. The cubic V-Al₅Cu₆Mg₂ phase with 39 atoms/u.c. is supposed structurally isomorphous to the Mg₂Zn₁₁ phase [11,12], which is considered as an intermediate step in the increasing structural complexity within the series of (Al-)Mg-Zn compounds between the simple Laves-phase MgZn₂ (12 atoms/u.c.) and the

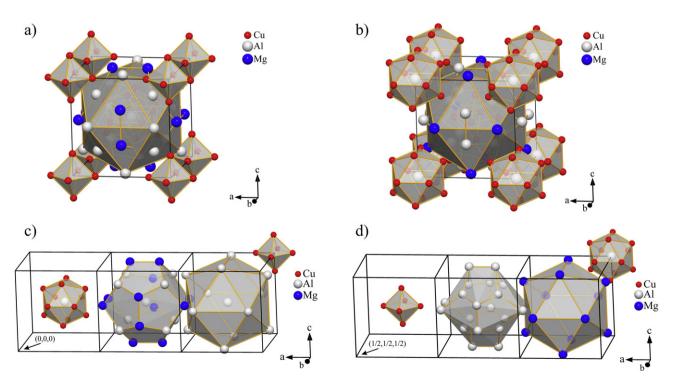
^{*} Corresponding author. J. Stefan Institute, University of Ljubljana, Faculty of Mathematics and Physics, Jamova 39, SI-1000 Ljubljana, Slovenia. Tel.: +386 1 4773 740; fax: +386 1 4773 191.

complex Bergman phase Mg₃₂(Al,Zn)₄₉ (162 atoms/u.c.) [13]. The basic building block of the latter is the 105-atom Bergman icosahedral cluster, found also in icosahedral Al–Mg–Zn OCs [14].

In this paper, we first present a nuclear magnetic resonance (NMR) determination of the 27 Al electric field gradient (EFG) tensors at the three crystallographically nonequivalent Al sites in the unit cell of the V-Al₅Cu₆Mg₂ phase. Since the symmetry of the tensors equals the symmetry of local chemical environments around the 27 Al resonant nuclei, we are able to test specific details (site symmetry of the Al crystallographic sites) of the Samson structural model [10] on a local scale of atomic clusters. Next we study the electronic structure of the V-Al₅Cu₆Mg₂ compound, by determining the electronic density of states (DOS) at the Fermi energy ε_F from the 27 Al NMR Knight shift, the spin-lattice relaxation rate and the low-temperature specific heat. We also report the electrical and thermal transport properties of the V-Al₅Cu₆Mg₂ phase and discuss the possible existence of a pseudogap in the electronic DOS at ε_F .

2. Structural considerations and sample description

The V-Al₅Cu₆Mg₂ phase is cubic with space group Pm3 (No. 200), the lattice constant a=8.3 Å and 39 atoms in the unit cell [10]. It is isostructural to the Mg₂Zn₁₁ phase [11,12] and is also a part of a series of phases with increasing complexity in the Al–Cu–Mg system with λ_3 -Mg(Al_xCu_{1-x})₂ isostructural to the MgZn₂ and Mg₃₂(Al_xCu_{1-x})₄₉ isostructural to the Bergman phase [15]. The unit cell contains three Al, two Cu and one Mg crystallographic site. The structure can be viewed either as a cubic packing of Pauling triacontahedra linked by Cu octahedra (Fig. 1a), or as an embedding of icosahedra in an fcc-structure matrix (Fig. 1b), or even as a network of distorted and modified overlapping Tsai-type clusters with octahedra replacing tetrahedra in the prototype binary Yb–Cd structure near the 1:6 Cd-rich composition [16,12]. Fig. 1c shows constituent shells of the


Pauling triacontahedron, containing an inner Cu icosahedron with an Al atom in the center, followed by a distorted dodecahedron of Al and Mg atoms, and an outer Al icosahedron. The connecting Cu octahedron is shown as well. In Fig. 1d, the constituent shells of the Tsai-type cluster are shown, with an inner Cu octahedron, followed by a strongly distorted Al dodecahedron, and an outer Mg icosahedron. The connecting Cu icosahedron is shown as well.

It is worth mentioning that in the Samson model of the V-Al₅Cu₆Mg₂ phase [10], all six crystallographic sites in the unit cell are fully occupied. This is also the case for the isomorphic Mg₂Zn₁₁, considering the Samson model of that phase from 1949 [11]. However, the recently refined Mg₂Zn₁₁ structural model [12] has reported that the central position of the inner Zn icosahedron (occupied by a Zn atom) inside the Pauling triacontahedron is not fully occupied, but fractionally by 72%. In the V-Al₅Cu₆Mg₂ unit cell, this position corresponds to the Al3 site (Wyckoff position 1b) in the center of the inner Cu icosahedron. Reinvestigation of the V-Al₅Cu₆Mg₂ structure is needed to find out whether fractional occupation applies to the Al3 site as well.

The V-Al₅Cu₆Mg₂ sample used in our study was an oriented monocrystal of dimensions $6.2 \times 2.2 \times 1.2$ mm³, with its long axis along the [100] crystallographic direction. It has been grown by the Bridgman method. Crystal growth procedure will be a subject of a separate paper [17]. Structural characterization by XRD, SEM and TEM techniques has shown that the sample was single-phase. Good structural quality at the local level of atomic clusters was also confirmed by our NMR experiments, to be presented next.

3. NMR determination of the 27 Al EFG tensors and the Knight shift

In NMR spectroscopy, the Zeeman energy levels of quadrupolar resonant nuclei such as ²⁷Al in an external magnetic field are

Fig. 1. (Color online) Structure of the V-Al₅Cu₆Mg₂ phase according to the Samson model [10]. The structure can be viewed either as (a) a cubic packing of Pauling triacontahedra linked by Cu octahedra, or (b) as an embedding of icosahedra in an fcc-structure matrix. The two representations are equivalent; one can be derived from the other by a shift for (0.5, 0.5). Panel (c) shows constituent shells of the Pauling triacontahedron, containing an inner Cu icosahedron with an Al atom in the center, followed by a distorted dodecahedron of Al and Mg atoms, and an outer Al icosahedron. The connecting Cu octahedron is shown as well. In panel (d), the constituent shells of the Tsai-type cluster are shown, with an inner Cu octahedron, followed by a strongly distorted Al dodecahedron, and an outer Mg icosahedron. The connecting Cu icosahedron is shown as well.

Download English Version:

https://daneshyari.com/en/article/7988839

Download Persian Version:

https://daneshyari.com/article/7988839

<u>Daneshyari.com</u>