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a b s t r a c t

In this contribution, the non-linear differential equation governing the glass transition phenomena of
metallic glasses has been investigated analytically through a powerful mathematical tool known as the
Adomian decomposition method. Unlike the previous works in this context, no simplifying assumption
has been made so that the approach is more realistic. Furthermore and as a salient advantage, the
method is free of discretization, linearization and perturbation. For the sake of exemplification, the
resulted general solution was tested for the alloy Zr41.2Ti13.8Cu12.5Ni10Be22.5 and the relevant “free volume
vs. temperature” curves were obtained. In addition, as another illustrative example, the glass transition
temperature for the alloy Pd40Ni40P20 was estimated by the proposed scheme. The employed approach
was successful to predict the glass transition temperature for the test case alloys closer to the experi-
mental values than those of by the prior mathematical works in the literature.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The glass transition in amorphous materials is encountered
during differential scanning calorimetry (DSC) experiments in
which a sample is heated at a constant rate. It is concurrent
with a sudden rise in the specific heat followed by a maximum.
Some specific alloys which undergo the glass transition are
classified as metallic glasses according to a scientific termi-
nology and an account of them, usually multicomponent
systems, can be found in [1,2]. More discussion concerning the
glass transition and metallic glasses is beyond the scope of this
communication and the interested reader is recommended to
consults the references [3,4].

In Ref. [5], van den Beukel and Sietsma managed to describe the
glass transition as a kinetic phenomenon driving the change in free
volume from a non-equilibrium toward an equilibrium state during
the warming up. They used the famous VogeleFulchereTammann
(VFT) equation for viscosity as a basis to define the equilibrium

free volume. Takeuchi and Inoue [1,6] followed the work and
carried out some linearizations and parameter fittings to tackle the
difficulties involved in the governing non-linear differential
equation.

It is the purpose of this communication to investigate the
original model by van del Beukel and Sietsma in its complete form
(i.e. without applying any simplifications) to be more realistic. This
is fulfilled by employing a powerful analytical technique known as
the Adomian decomposition method.

2. Formulation of the problem

In this section we only describe the main points of derivation of
the governing equation and make reference to [5] for full details.

A rate-based expression for the change of concentration
equivalents of the free volume during a DSC experiment with
respect to time can be written as

dCf
dt

¼ �kCf
�
Cf � Cfe

�
(1)

The concentrations are related to the free volume by the
following equations
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Cf ¼ e�1=x (2)
Cfe ¼ e�1=xeq (3)

An Arrhenius type expression for the kinetic constant is chosen.

k ¼ C0e
�E=RT (4)

And the free volume at the equilibrium state is evaluated by
a VFT-like expression

xeq ¼ T � T0
B

(5)

As the heating is performed at a constant rate, a, during the
whole process, we can write

dCf
dt

¼ a
dCf
dT

(6)

Substituting Eqs. (2)e(6) in Eq. (1) and performing simple
operations concludes

dx
dT

¼ �C0x2

a
e�E=RT

�
e�1=x � e�B=T�T0

�
(7)

3. Basics of the ADM

The Adomian decomposition method (ADM) and its related
modifications [7e11] have found widespread applications in
treatment of many functional equations (i.e. linear or non-linear
algebraic, differential, integral, integro-differential, etc.). Through
its analytical methodology, the ADM furnishes the exact solution
rapidly in most cases. As a salient advantage, the ADM is free of
discretization, linearization, or perturbation. There exists a consid-
erable deal of research works benefiting from this method (e.g. see
Refs. [12e16]).

For the ease of the reader, we provide a quick review of the basic
idea of the ADM in this part.

Without loss of generality, let us consider a general differential
equation as follows

Luþ Nuþ Ru ¼ g (8)

where L is an easily invertible linear operator, here the differential
operator, N denotes the nonlinear operator, Ru symbolizes the
remaining parts and g is a bounded known function. Taking the
inverse operator L�1, i.e. integral operator, from the both sides of Eq.
(8) gives

u ¼ a� L�1g � L�1Nu� L�1Ru (9)

with a being emerged from the integrations.
According to the ADM, the solution to Eq. (8) corresponds to

a decomposed infinite series as u ¼ PN
n¼0 un and the non-linear

terms shall be replaced by a special representation of
Nu ¼ PN

n¼0 An which are famous as Adomian polynomials. These
polynomials are recursively obtained from the following defini-
tional formula,

Anðu0;u1;.;unÞ ¼ 1
n!

"
dn

dln
N

 XN
i¼0

liui

!#
l¼0

(10)

By substituting the preceding summations into Eq. (9) and
choosing u0 ¼ a � L�1g subsequent to a regrouping it yields

�
u0 ¼ a� L�1g
uiþ1 ¼ �L�1Ai � L�1Rui; i � 0

(11)

The forgoing recurrence simply provides the convenient solu-
tion to Eq. (8).

The convergence of the ADM has been investigated fully in [17].

4. Solution of the problem by the ADM

Let us write the Eq. (7) in its operator form equivalent as

Lx ¼ �C0x2

a
e�E=RT

�
e�1=x � e�B=T�T0

�
(12)

with L($) ¼ d($)/dT, and essentially L�1ð$Þ ¼
Z T

Tin
ð$ÞdT :

According to the described principles of the ADM, we conclude
the solution in the form of the recurrence to follow

8>>><
>>>:

x0 ¼ xin

xiþ1 ¼ �C0
a

ZT
Tin

Aie
�E=RT

�
Bi � e�B=T�T0

�
dT; i � 0

(13)

where Ai’s and Bi’s stand for the Adomian polynomials pertaining to
the non-linearities x2 and e�1/x, respectively. Unfortunately, the
integral term in Eq. (13) can not be evaluated analytically. There-
fore, we have to adopt a numerical scheme, like the famous
Simpson’s rule, to tackle the recursive computation involved for
any given T.

In order to facilitate the convergence of the ADM, Wazwaz has
proposed a special choice for the first component of the solution,
i.e. u0 (see Ref. [9] for more details). In this regard, in course of
solving the Eq. (7), we have refined the Eq. (13) as

8>>>>>>>>>>><
>>>>>>>>>>>:

x0 ¼ 3

x1 ¼ d� C0
a

ZT
Tin

A0e
�E=RT

�
B0 � e�B=T�T0

�
dT

xiþ1 ¼ �C0
a

ZT
Tin

Aie
�E=RT

�
Bi � e�B=T�T0

�
dT; i � 1

(14)

where xin ¼ 3þ d with 3being sufficiently smaller than d so that
the sequence produced by the recurrence Eq. (14) converges after
a few iterations. By calculating the Adomian polynomial
components Ai and Bi from Eq. (10) and their substitution into Eq.
(14), one gets the first five terms of the solution, i.e. x, para-
metrically as
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