Accepted Manuscript

Arc evaporated Ti-Al-N/Cr-Al-N multilayer coating systems for cutting applications

International Journal of
REFRACTORY METALS
& HARD MATERIALS

T. Teppernegg, C. Czettl, C. Michotte, C. Mitterer

PII: S0263-4368(17)30727-8

DOI: https://doi.org/10.1016/j.ijrmhm.2017.12.014

Reference: RMHM 4612

To appear in: International Journal of Refractory Metals and Hard Materials

Received date: 9 October 2017 Revised date: 7 December 2017 Accepted date: 7 December 2017

Please cite this article as: T. Teppernegg, C. Czettl, C. Michotte, C. Mitterer, Arc evaporated Ti-Al-N/Cr-Al-N multilayer coating systems for cutting applications. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Rmhm(2017), https://doi.org/10.1016/j.ijrmhm.2017.12.014

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Arc Evaporated Ti-Al-N / Cr-Al-N Multilayer Coating Systems for Cutting Applications

T. Teppernegg^{1*}, C. Czettl*, C. Michotte**, C. Mitterer***

* Ceratizit Austria GmbH, 6600 Reutte, Austria

** Ceratizit Luxembourg S. à r. l., 8201 Mamer, Luxembourg

*** Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, 8700 Leoben, Austria

Abstract

Ti-Al-N based coatings are presently state-of-the art for severe cutting applications. Further improvement of these coatings can be reached by multilayer architectures in combination with different layer materials. Within this work, multilayer arrangements consisting of Ti-Al-N and Cr-Al-N sublayers with different chemical composition and sublayer thicknesses were investigated. All coatings were deposited via cathodic arc evaporation. The individual sublayers of the multilayer coatings exhibited thicknesses of 10, 30, 100 and 300 nm, respectively. The morphology and microstructure of the coatings were investigated by scanning and transmission electron microscopy and X-ray diffraction. Mechanical properties were evaluated using nanoindentation and milling tests. In addition, the thermal stability of the coatings was characterized by annealing experiments. An optimum in hardness and cutting performance was obtained for multilayers with 10 nm sublayer thickness and high Al contents within the Ti-Al-N layers, whereas the Al content in the Cr-Al-N sublayers showed only a minor effect.

Keywords

PVD, Ti-Al-N, Cr-Al-N, Multilayer, Microstructure, Hardness, Thermal stability, Milling

E-mail address: tamara.teppernegg@ceratizit.com

1

¹ Corresponding author. Tel.: +43 5672 200-2399, fax: +43 5672 200-546.

Download English Version:

https://daneshyari.com/en/article/7989799

Download Persian Version:

https://daneshyari.com/article/7989799

<u>Daneshyari.com</u>