Accepted Manuscript

Spectroscopic reflects of structural disorder in ${\rm Eu}^{3+}/{\rm Pr}^{3+}$ -doped ${\rm La}_{0.4}{\rm Gd}_{1.6}{\rm Zr}_2{\rm O}_7$ transparent ceramics

J. Trojan-Piegza, Z. Wang, V. Kinzhybalo, G. Zhou, S. Wang, E. Zych

PII: S0925-8388(18)32734-8

DOI: 10.1016/j.jallcom.2018.07.233

Reference: JALCOM 46949

To appear in: Journal of Alloys and Compounds

Received Date: 2 February 2018

Revised Date: 6 July 2018
Accepted Date: 19 July 2018

Please cite this article as: J. Trojan-Piegza, Z. Wang, V. Kinzhybalo, G. Zhou, S. Wang, E. Zych, Spectroscopic reflects of structural disorder in Eu³⁺/Pr³⁺-doped La_{0.4}Gd_{1.6}Zr₂O₇ transparent ceramics, *Journal of Alloys and Compounds* (2018), doi: 10.1016/j.jallcom.2018.07.233.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Spectroscopic reflects of structural disorder in Eu³⁺/Pr³⁺-doped La_{0.4}Gd_{1.6}Zr₂O₇ transparent ceramics

J. Trojan-Piegza^{a,*}, Z. Wang^b, V. Kinzhybalo^c, G. Zhou^b, S. Wang^{b,*}, E. Zych^a

^aFaculty of Chemistry, University of Wrocław
14 F. Joliot-Curie Street, Wrocław 50-383, Poland
^bKey Laboratory of Transparent and Opto-functional Advanced Inorganic Materials, Shanghai
Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
^cInstitute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box
1410, 50-950 Wrocław, Poland

* corresponding authors: <u>joanna.trojan-piegza@chem.uni.wroc.pl</u> <u>swwang51@mail.sic.ac.cn</u>

Keywords: ceramics, optical materials, order-disorder effect, rare earth alloys and compounds

Abstract

Perfectly transparent ceramics of $La_{0.4}Gd_{1.6}Zr_2O_7$ doped with either Eu^{3+} or Pr^{3+} ions were prepared by high-temperature vacuum sintering. Results of the Rietveld structure refinement and spectroscopic properties of the ceramics are presented and discussed in details. Photoluminescence characteristics support the non-uniformity in the crystal structure of ceramics. X-ray excited luminescence of $La_{0.4}Gd_{1.6}Zr_2O_7$:Eu was rather inefficient and the Pr-doped ceramics showed no Pr-related radioluminescence. Instead they produced Eu^{3+} emission characteristic for Gd_2O_3 :Eu phase not detected in X-ray diffraction patterns.

1. Introduction

Compounds of the general formula A₂B₂O₇ (A and B stands for 3+ and 4+ ions, respectively) are hosts for materials with a whole variety of actual and potential applications. Examples are thermal barrier coatings [1],[2],[3],[4],[5],[6], nuclear waste forms [7],[8],[9],[10],[11],[12],[13], electrolytes [14],[15], catalysts [16] and optical materials [17],[18],[19],[20],[21],[22],[23]. The A₂B₂O₇ compounds can crystallize in either ordered pyrochlore or disordered fluorite structures. The pyrochlore phase is considered as a superstructure of the fluorite phase with doubled *a* axis. The ratio of ionic radii of cations at A and B sites affects directly the crystal phase they form which in turn influences the compositions spectroscopic properties. What complicates the effect of the structure on the compositions properties is their tendency towards formation of anionic Frenkel defects [24],[25],[26],[27]. Their population quickly increases if processing is performed at high temperatures [28],[29] which is the case of transparent ceramics fabrication.

In the case of rare earth zirconates, $RE_2Zr_2O_7$, the stable pyrochlore structure is formed when r_{RE}/r_{Zr} ratio ranges from 1.26 Å (for $CN_{Zr}=8$) or 1.48 Å (for $CN_{Zr}=6$) up to 1.78 and depends directly on the RE^{3+} ionic radius. Below the correspondingly lower limit values the pyrochlore structure becomes disordered and transfers to a defect-fluorite structure [30],[31]. When the $r_{RE}/r_{Zr}>1.78$, a monoclinic/ δ (delta) phase is formed [32]. Furthermore, pyrochlore

Download English Version:

https://daneshyari.com/en/article/7989981

Download Persian Version:

https://daneshyari.com/article/7989981

<u>Daneshyari.com</u>