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a  b  s  t r  a  c  t

New  internal  mechanisms  of  a deployable  structure  could  be  generated,  when  the  structure  undergoes
significant  transformations  along  its  compatibility  path.  Because  of  such  kind  of  kinematic  bifurcation,
the  structure  might  not  transform  into  the  desired  configuration.  To  design  novel  deployable  structures,
it  is  necessary  to detect  all possible  bifurcation  points  of  the  compatibility  paths  and  study  the  bifurcation
behavior.  Here,  on  the  basis  of the nonlinear  prediction–correction  algorithm  with  variable  increment
size,  we  will  propose  an  efficient  approach  to detect  all the  possible  bifurcation  points  of the  compatibil-
ity  path  for  a  symmetric  deployable  structure.  Null space  of the  Jacobian  matrix  is  studied  iteratively,  to
follow the  complete  compatibility  path.  The  variable  increment  size  at each  step  is  determined  by  eval-
uating  whether  the  configuration  is close  to the singular  configuration.  Numerical  examples  of  several
2D  and  3D  symmetric  deployable  structures  are  presented,  to  verify  the  feasibility  and  computational
complexity  of  the  proposed  approach.  The  results  show  that  the proposed  method  is computationally
efficient,  and  could  detect  different  bifurcation  points  of the  compatibility  path.  Further,  it  turns  out  that
all  the analyzed  symmetric  structures  experience  kinematic  bifurcation  on  certain  conditions.

©  2015  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Deployable structures are a type of novel kinematically inde-
terminate structures that have internal mechanisms and can be
transformable. As these structures have strong vitality, they have
been gradually applied in aerospace engineering, mechanical engi-
neering and civil engineering. However, new internal mechanisms
of a deployable structure could be generated at bifurcation, when
the structure is folding along its compatibility path. Reaching a
bifurcation point of the compatibility path, such a structure can
transform along either the original path or the secondary paths
at bifurcation. Thus, the structure might not transform into the
desired configuration. Then, the geometric configuration, mobil-
ity and kinematic indeterminacy can change suddenly, which is
a complicated and nonlinear behavior. Therefore, it is important
and necessary for detecting all possible bifurcation points of the
compatibility paths, to design novel deployable structures.

In fact, kinematic bifurcation exists for many finite mechanisms,
especially symmetric deployable structures with pin-joints or rev-
olute hinges [1–4]. This phenomenon has attracted great attention.
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Some numerical approaches have been described and utilized to
follow the complete compatibility path of a deployable structure
[5–9]. To detect kinematic bifurcation and predict kinematic behav-
ior of deployable pin-jointed structures, Kumar and Pellegrino [10]
gave a computational scheme using the singular value decompo-
sition (SVD) of the equilibrium matrix. It turns out that when a
deployable structure is getting close to a bifurcation point along
the compatibility path, the involved matrices (e.g., the equilibrium
matrix and the compatibility matrix) further become numerically
ill-conditioned, and the smallest nonzero singular value would
successively decrease to zero. Lengyel and You [11] studied the sin-
gularities of pin-jointed structures with a single degree of freedom
using the elementary catastrophe theory. They found that common
cuspoid catastrophe types could exist in the compatibility paths of
finite mechanisms with pin-joints. More recently, Yuan et al. [12]
proposed an analogous stiffness method to investigate the kine-
matic bifurcation of finite mechanisms. The bifurcation points along
the compatibility paths of finite mechanisms could be detected by
solving analogous stiffness equations and compatibility equations
simultaneously.

However, most of the aforementioned methods are focused
on kinematic analysis of pin-jointed structures. In fact, there are
many other types of deployable structures connected by linkages
and revolute joints. Based on the SVD of the Jacobian matrix of
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constraint equations, Chen and You [13] discovered that kinematic
bifurcations could occur along the deployments of a type of sym-
metric foldable frame. Some researchers have studied the Jacobian
matrix method and investigated kinematic characteristics at singu-
lar configurations of overconstrained mechanisms [14,15]. Macho
et al. [16] introduced a general symmetrical procedure to Jacobian
matrix method to trace singularity maps of parallel manipulators.

Here, based on the nonlinear prediction–correction algorithm
[10,17], we will present an efficient numerical approach with vari-
able increment size. It can detect all the possible bifurcation points
of the compatibility path for a symmetric deployable structure,
which is either a pin-jointed structure or an overconstrained mech-
anism. Null space of the Jacobian matrix is iteratively evaluated
to follow the compatibility path. The variable increment size for
each step is determined by evaluating whether the configuration is
getting close to the singular configuration.

2. Numerical approach for identifying singularity

2.1. Kinematic constraint equations

Deployable structures presented throughout this study are
mainly assembled by rigid links via pin-joints or revolute joints.
Before constructing the Jacobian matrix for a deployable structure,
we describe the kinematic constraint equations for typical con-
straints. As shown in Fig. 1(a), rigid links are commonly used as
connecting elements, and their lengths keep invariant regardless
of finite motions [18].

Given a rigid link element connected by two nodes i and j, the
nonlinear kinematic constraint equation can be written as:

Fk(X i, X j) = (X j − X i) · (X j − X i)
T − L2

ij = 0 (1)

where Fk() is generalized as a function for describing the kine-
matic constraints, Lij is the length of the rigid link, and Xi and Xj
are the row vectors of the nodal coordinates of i and j. For exam-
ple, for a node i in a 3D Cartesian coordinates system, the vector

Fig. 1. Typical kinematic constraints: (a) rigid link; (b) constant angle � ∈ (0, �); (c)
constant angle � = 0 or �.

Xi = [xi, yi, zi], and xi, yi, and zi are the coordinates of the node in the
x, y and z directions, respectively.

Fig. 1(b) and (c) shows the angular constraints, which are
generally adopted for scissor-like elements [19] and other overcon-
strained mechanisms [4,7]. The angular constraint is of the form:

Fk(Xo, X i, X j) = (X i − Xo) · (X j − Xo)T − LoiLoj cos � = 0 (2)

where Xo is the row vector for the intersecting node o, Loi and Loj
are the lengths of the two  adjacent link segments, and � is the angle
between the two link segments. However, when the two adjacent
link segments in Fig. 1(c) are parallel (i.e., � = 0 or �), the kinematic
constraint equation should be rewritten as:

Fk(Xo, X i, X j) =
∥∥(X i − Xo) ⊗ (X j − Xo)

∥∥
2
− LoiLoj sin � = 0 (3)

where ⊗ defines the tensor product of two  vectors, and∥∥(X i − Xo) ⊗ (X j − Xo)
∥∥

2
is the 2-norm of (Xi− Xo) ⊗ (Xj− Xo).

In addition, it is easy to write the boundary constraint equation
for a fixed node i as:

Fk(X i) = X i − C = 0 (4)

where the row vector C keeps constant.
Then, the kinematic constraint equations for the whole struc-

ture can be assembled in a similar way, where the kth constraint
equation is expressed in a compact form as:

Fk(X1, X2, X3, . . ., Xn) = 0 for k = 1, 2, . . .,  nc (5)

In Eq. (5), nc is the number of kinematic constraints.

2.2. The Jacobian matrix and the internal mechanism modes

After taking the derivative of the constraint equations, the
resulting equation can be written as:

J · dX = 0 (6)

The kth row of the Jacobian matrix is

Jk =
[

∂Fk(X1, X2, X3, . . .,  Xn)
∂X1

, . . .,
∂Fk(X1, X2, X3, . . .,  Xn)

∂Xn

]

for k = 1, 2, . . ., nc (7)

and dX = [dX1, dX2, . . .,  dXn]T. Note that the Jacobian matrix
contains some important information which can be utilized in kine-
matic analysis [20]. For instance, the null space of the Jacobian
matrix gives the independent internal mechanism modes, denoted
as a matrix M.  Then the number of internal mechanism modes for
a deployable structure with boundary constraints is:

m = d × n − r (8)

where n is the number of generalized nodes in a structure, and r is
the rank of the matrix J. The dimension of a generalized node for
a 2D pin-jointed structure, 3D pin-jointed structure, 2D overcon-
strained structure or 3D overconstrained structure is d = 2, 3, 3 or
6, respectively. In addition, the number of internal mechanisms for
a free-standing deployable structure is:

m = d × n − r − T − R (9)

where T is the dimension of rigid-body translations, and R is the
dimension of rigid-body rotations. Accordingly, T + R modes of
rigid-body motions have been excluded from the mechanism mode
matrix M [21].

On the other hand, when a deployable structure is expressed in
the symmetry-adapted coordinate system, the Jacobian matrix is of
the block-diagonalized form [22–24]. Null spaces of the blocks of
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