Accepted Manuscript

Ag nanoparticles embedded Er³⁺/Yb³⁺ co-doped phosphate glass single-mode fibers

Guowu Tang, Xiujie Shan, Qilai Zhao, Guoquan Qian, Wei Lin, Huihui Cheng, Licheng Jiang, Qi Qian, Zhongmin Yang

PII: S0925-8388(18)32723-3

DOI: 10.1016/j.jallcom.2018.07.222

Reference: JALCOM 46938

To appear in: Journal of Alloys and Compounds

Received Date: 25 April 2018 Revised Date: 18 July 2018 Accepted Date: 19 July 2018

Please cite this article as: G. Tang, X. Shan, Q. Zhao, G. Qian, W. Lin, H. Cheng, L. Jiang, Q. Qian, Z. Yang, Ag nanoparticles embedded Er³⁺/Yb³⁺ co-doped phosphate glass single-mode fibers, *Journal of Alloys and Compounds* (2018), doi: 10.1016/j.jallcom.2018.07.222.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Ag nanoparticles embedded Er³⁺/Yb³⁺ co-doped phosphate glass single-mode fibers

Guowu Tang^{1,2}, Xiujie Shan², Qilai Zhao², Guoquan Qian², Wei Lin^{1,2}, Huihui Cheng², Licheng Jiang², Qi Qian^{2,*}, and Zhongmin Yang^{1,2}

¹School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China

²State Key Laboratory of Luminescent Materials and Devices, Institute of Optical Communication Materials, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, and Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 510640, China

ABSTRACT:

An enhanced 1.53 μ m fluorescence was observed in Er³⁺/Yb³⁺ co-doped phosphate glass containing Ag nanoparticles (NPs). Then Ag NPs embedded Er³⁺/Yb³⁺ co-doped phosphate glass single-mode fibers were successfully drawn by using the conventional rod-in-tube technique. A 54 mW single-frequency fiber laser operated at 1.53 μ m was built by using a 1.8-cm-long as-drawn fiber. To the best of our knowledge, this is the first time that a 1.53 μ m single-frequency fiber laser has been realized with a short piece of Er³⁺/Yb³⁺ co-doped phosphate glass single-mode fiber containing Ag NPs.

Keywords

Ag NPs; $\text{Er}^{3+}/\text{Yb}^{3+}$ co-doped; Phosphate glass; Single-mode fibers; 1.53 μm laser

^{*}Author to whom correspondence should be addressed. E-mail address: qianqi@scut.edu.cn

Download English Version:

https://daneshyari.com/en/article/7990126

Download Persian Version:

https://daneshyari.com/article/7990126

<u>Daneshyari.com</u>