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a  b  s  t  r  a  c  t

Applying  two  identities  for divergence-free  non-symmetric  and  symmetric  second-order  tensors,  novel
type  of  first-  and  second-order  stress  functions  are  proposed  for three-dimensional  elasticity  problems.
It  is shown  that  self-equilibrated  but non-symmetric  3D  stress  fields  can  be  generated  by one  first-order
stress  function  vector,  whereas  a  self-equilibrated  and  symmetric  3D stress  field  can  be generated  by
one  Airy-type  second-order  stress  function.  Assuming  linearly  elastic  materials,  the  zero-energy  modes
of the  stress  functions  introduced  are  derived  and  investigated.  It is  pointed  out that  the  structure  of  the
zero-energy  modes  of  the  proposed  first-order  stress  function  vector  is  the  same  as  that  of  the  rigid-body
displacements  in  the  linear  theory  of  elasticity.
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1. Introduction

Divergence-free second-order tensor fields are often used in
solid and fluid mechanics and in many other areas of physics.
A self-equilibrated stress field in elasticity, for example, is a
divergence-free tensor field and can be generated from stress func-
tions by differentiation. The concepts of first- and second-order
stress functions have been introduced by [3–5], see also [7]. If
symmetry of the shear stresses is not a priori required, a divergence-
free second-order stress tensor can be generated by a first-order
stress function tensor that has six independent non-zero compo-
nents [4,9,2]. The stress components in that case can be obtained
by the combinations of first-order partial derivatives of the stress
functions. A symmetric and self-equilibrated stress fields can be
obtained from a second-order stress function tensor that has three
independent non-zero components [10,4]. The stress components
in that case can be obtained by the combinations of second-order
partial derivatives of the stress functions. The main advantage in
the use of first-order stress functions, from the point of view of
finite element analysis, is that they require only C0-continuous
approximations, in contrast to the C1-continuity requirement for
second-order stress functions.

The importance of the knowledge of the zero-energy stress
functions in the solution of boundary value problems using
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complementary energy-based dual- and dual-mixed variational
principles and finite element models is similar to that of the
zero-energy displacements in the strain energy-based primal-
and primal-mixed formulations and finite elements. In the two-
dimensional case, the structure of the first-order stress functions
that give zero complementary strain energy is as simple as that
of the zero-energy displacements (that give zero strain energy). A
complete discussion for the two-dimensional case has been given
in [4,6] by pointing out that the zero-energy first-order stress
functions in 2D have the same structure as that of the rigid-body
displacements, and the zero-energy modes are three in number.
The structure of the zero-energy first-order stress function modes
in the general three-dimensional case is, however, rather compli-
cated, see [1], and their suppression in stress-based dual-mixed
finite element procedures represents an extra difficulty.

The introduction of stress functions that generate divergence-
free equilibrated stress fields is usually based on the div curl (.) ≡0
identity, i.e., the divergence of the curl of an arbitrary differentiable
tensor field is identically zero. This paper presents and applies two
novel identities for constructing three-dimensional divergence-
free non-symmetric, as well as symmetric second-order tensor
fields. These identities are introduced and proven in Section
2. An application of the identities in elasticity for constructing
divergence-free and self-equilibrated stress field is discussed in
Section 3. The three-dimensional translational equilibrium equa-
tions without symmetry are satisfied by one first-order stress
function vector. When symmetry of the stress tensor is additionally
required, one Airy-type second-order stress function is introduced
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to generate a self-equilibrated stress field in 3D. The zero-energy
modes of the new stress functions are investigated in Sections 3.2
and 3.4. For the special case of 2D elasticity, the proposed stress
functions induce the already known relations, as pointed out in
Section 3.5.

Notation. Using the summation convention, the position vec-
tor of an arbitrary spatial point P is denoted by x = xk ek, where xk
are the Cartesian coordinates of P and ek represent an orthonormal
basis. The gradient of a smooth vector field v(x) = vi(xk) ei is defined
as (grad v)ij = vi,j , (gradT v)ij = vj,i, where a comma  followed by the
letter i in the subscript indicates partial differentiation with respect
to xi and a T in the superscript stands for the transpose. The diver-
gence of v(x) is given by div v = tr(grad v) = vi,i, and the divergence
of a smooth second-order tensor field A(x) = Aij(xk) ei ej is defined as
(divA)i = Aij,j. The second-order unit tensor is denoted by 1 = ıij ei ej,
where ıij is the Kronecker symbol.

2. Identities for divergence-free second-order tensors

Identity 1. Let v(x) be an arbitrary, at least twice continuously
differentiable vector field. Let the second-order tensor field A(x) be
obtained from v(x) as

A (x) = (div v) 1 − gradT v, Aij (xk) = va,a ıij − vj,i . (2.1)

Then A (x) is a divergence-free tensor, i.e., divA(x) = 0 .

Proof of Identity 1. Using indicial notation we  can write:

(divA)i = Aij,j =
(
va,a ıij − vj,i

)
,j

= va,aj ıij − vj,ij

= va,ai − va,ia ≡ 0.

(2.2)

Identity 2. Let f(x) be an arbitrary, at least thrice continuously
differentiable scalar field. Let the second-order tensor field S(x) be
obtained from f(x) as

S(x) = div (gradf ) 1 − grad (gradf ). (2.3)

Then S(x) is a divergence-free symmetric tensor, i.e., div S(x) = 0 and
S − ST = 0 .

Proof of Identity 1. The symmetry of S follows from its definition
(2.3): using indicial notation,

Sij (xk) = f,aa ıij − f,ij, (2.4)

and this is a symmetric expression with respect to the indices i and
j. The divergence of S(x) is zero by

(div S) ,i = Sij,j =
(

f ,aaıij − f ,ji

)
,j = f ,aai − f ,jij ≡ 0. (2.5)

Remark. The divergence-free property of S(x) defined by (2.3)
also follows from Identity 1, if the gradient of f(x) is denoted by
v(x).

3. Divergence-free stress fields and zero-energy stress
functions

3.1. Equilibrium without symmetry

We  consider an elastic body in its deformed configuration
denoted by � and assume that � is a simply-connected domain
bounded by a closed surface � with outward unit normal n. Let
the body be subjected to conservative body forces of density �b
in �.  Following from the balance of linear momentum [12,10], the
three-dimensional equilibrium equation is given by

div � + �b = 0, x ∈ �,  (3.1)

where �(x) is the Cauchy stress tensor. When the balance of angu-
lar momentum, i.e., the symmetry of � is not a priori required,
the translational equilibrium Eq. (3.1) can, in view of Identity 1 of
Section 2, be satisfied by introducing a first-order stress function
vector �(x):

�(�) = (div �) 1 − gradT � + B1, (3.2)

where B denotes the potential of the body forces �b defined by

�b = −grad B, (3.3)

and B1 is a particular solution to (3.1). Using a Cartesian frame xyz,
the components of the equilibrated stress field (3.2) are given by
the following expressions:

�x = ∂�y

∂y
+ ∂�z

∂z
+ B, (3.4)

�y = ∂�z

∂z
+ ∂�x

∂x
+ B, (3.5)

�z = ∂�x

∂x
+ ∂�y

∂y
+ B, (3.6)

�xy = −∂�y

∂x
, �yx = −∂�x

∂y
, (3.7)

�yz = −∂�z

∂y
, �zy = −∂�y

∂z
, (3.8)

�xz = −∂�z

∂x
,  �zx = −∂�x

∂z
, (3.9)

and the matrix of the equilibrated stress tensor � in the orthonor-
mal  basis ex,ey,ez is given by

[�] =

⎡
⎢⎣

�y,y + �z,z −�y,x −�z,x

−�x,y �z,z + �x,x −�z,y

−�x,z −�y,z �x,x + �y,y

⎤
⎥⎦ +

⎡
⎣

B 0 0

0 B 0

0 0 B

⎤
⎦ .

(3.10)

The symmetric and the skew-symmetric parts of the stress ten-
sor � in terms of � can be written as

sym � = (div �) 1 − 1
2

(grad � + gradT �), (3.11)

skw � = 1
2

(grad � − gradT �) = skw (grad �) . (3.12)

These expressions show some similarity to the strain-displacement
and rotation-displacement relations of linear elasticity. Note
also that tr �(�) = tr (sym �) = 2 div � and, in addition, the skew-
symmetric parts of � and the gradient of � are, according to (3.12),
equal.

Remark. No proof exists that any self-equilibrated non-
symmetric stress tensor can be expressed by the representation
(3.2) using one first-order stress function vector �, i.e., the com-
pleteness of representation (3.2) is an open issue.

3.2. Zero-energy modes of the stress function vector �

The zero-energy displacements in elasticity are usually called as
rigid body modes and their suppression in the solution of boundary
value problems, especially when strain energy-based variational
principles and numerical methods are applied, is of practical impor-
tance. Numerical solution procedures that rely on complementary
energy-based dual- and dual-mixed variational principles often
require the use of equilibrated stress spaces generated by stress
functions. In the latter case the suppression of the zero-energy
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