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a  b  s  t  r  a  c  t

One  dimensional  discrete  systems,  such  as  axial  lattices,  may  be investigated  by using  some  enriched  con-
tinuum  models.  In  this  paper,  strain  gradient  models  (also  called  gradient  elasticity)  and  stress  gradient
models  (also  called  nonlocal  elasticity)  are both  shown  to be supported  by some  microstructured  physical
configurations.  Starting  from  the difference  equations  associated  with  each  discrete  system,  a  continu-
alization  approach  is applied  to the  governing  difference  equations.  Alternatively,  one  may  use energy
considerations  to derive  these  higher-order  continua.  Stress  gradient  models  are  built  from  concentrated
microstructure  (with direct  neighboring  interaction)  whereas  strain  gradient  models  are  associated  to
some distributed  microstructure  (also  with  direct  neighboring  interaction).  Each  model  leads  to  opposite
effect,  namely  the softening  effect  of the small  scale  terms  for the  stress  gradient  model  (built  from  con-
centrated  microstructure),  and  the  stiffening  effect  of the  small  scale  terms for  the  strain  gradient  model
(built  from  distributed  microstructure)  with  respect  to  the  asymptotic  local  model.  We  also  discuss  the
link  between  lattice  equations,  finite  difference  formulation  or finite  element  formulation  of  the con-
tinuous  local  problem.  The  paper  concludes  that  the  local  neighboring  interaction  at  the  discrete  scale
may  transmit  some  higher-order  effects  at the macroscopic  scale.  Hence,  the  higher-order  nature of the
macroscopic  constitutive  laws  may  not  necessarily  be seen  as  the  consequence  of  nonlocal  interaction  at
the lattice  scale.

© 2015  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Discrete repetitive systems or lattice systems may  be analyzed
using continuum models for some deeper investigations of their
behaviors. There are less theoretical results available for discrete
systems characterized by difference equations when compared
to the more mature theory of differential or partial differential
equations. It is of primary interest for engineering purposes to
be able to connect lattice mechanics with continuum mechanics.
Lagrange [1] was apparently the first one who showed the link
between one-dimensional lattices (string lattice or axial lattice)
with the associated continua, which is asymptotically obtained
for infinite number of elements. Piola during the XIXth century
built peridynamics (or relative displacement-based) nonlocal mod-
els and higher-order gradient continua from discrete microscale
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interactions [2,3]. It is not the scope of this paper to report the very
rich literature dedicated to the link between lattice and contin-
uum models, especially for truss-type or beam-type lattices (see
for instance [4–8]). We will mainly focus our analysis on one-
dimensional stress gradient models and strain-gradient models,
where both are reputed to be able to capture small scale effect
induced by the microstructure at a subscale.

There is a debate in the literature between these two  families of
enriched continua, namely the stress gradient model which is also
called the nonlocal model [9] and the strain gradient model which
is also called gradient elasticity model [10,11]. These enriched con-
tinuum models lead to opposite results, namely the softening effect
of the small length scale for the stress gradient model, and the
stiffening effect of the small length scale for the gradient elasticity
model [12,13]. A further elucidation of this apparently paradoxical
situation is the explicit aim of this investigation.

One possible way to differentiate each model is to derive some
micromechanics arguments supporting each class of model. It
has been already shown by Eringen [9] that axial lattices with
concentrated microstructure and direct neighboring interaction,
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may  be efficiently fitted by the stress gradient model (or the
nonlocal model). Eringen [9] calibrated the length scale parameter
of the stress gradient model by comparing the wave dispersive
properties of the nonlocal with the lattice one, also referred to as
the Born–Kármán lattice model [14]. It is also possible to calibrate
this length scale parameter from the lower frequency spectrum,
as shown by Challamel et al. [15] for the axial lattice system. One
can state that nonlocal models may  be introduced from lattice
discrete arguments that are only associated with direct neighbor-
ing interactions (see also [16] for bending lattice systems). It is
also possible to build the nonlocal kernel from generalized lattice
interactions (see [17] for strain-based integral model or [18] for
peridynamics-type nonlocal model).

There are, however, some other arguments for justifying
gradient elasticity models. Mindlin [19] showed that gradient
elasticity models may  be asymptotically derived from lattice
systems with direct and indirect neighboring interactions (includ-
ing two and three-neighbor interactions), as already considered
by Gazis and Wallis [20]. This idea was used again by Poly-
zos and Fotiadis [21] or more recently by Polyzos et al. [22]
for deriving gradient elasticity models with direct and indirect
interaction models. Carcaterra et al. [23] derived higher-order
gradient elasticity models from generalized lattice interactions.
Polyzos and Fotiadis [21,22], following the pioneer work of
Mindlin [10] also introduced some distributed microstructure
or the concept of averaging over a representative volume ele-
ment [24]. At the same time it appears that the foundation
of gradient elasticity model from direct neighboring interaction
is still an open and controversial topic that will be discussed
herein.

In this paper, we consider the axial lattice with concentrated
microstructure as a paradigmatic one dimensional system. The
equations are formally identical to those for the torsional lattice
or for the string lattice (see [15] for the complete presentation
of these three structural problems). Lattice equations with con-
centrated microstructure are shown to be equivalent to the finite
difference formulation of the asymptotic local continuous prob-
lem, whereas the lattice equations with distributed microstructure
are shown to be equivalent to a finite element formulation of the
asymptotic continuous problem with linear interpolation field for
the displacement.

We  show in this study that the stress gradient nonlocal model
is a relevant theory for capturing the scale effect of the lattice
model with a concentrated microstructure. The vibration of the
nonlocal bar has been already explored by Aydogdu [25] and also
Challamel et al. [26] and these nonlocal results efficiently captured
the lattice model in this case. On the other hand, we  also show
that gradient elasticity results applied to the bar (see for instance
[11] or [27]) are relevant for the lattice model with distributed
mass properties. Concentrated or distributed mass properties lead
to different macroscopic properties, namely the softening and
the stiffening scale effect with respect to the local continuous
model. These lower bound and upper bound status of the non-
local and the gradient elasticity model are highlighted in the
context of finite difference and finite element method properties,
as already investigated for instance by Polya [28] for the membrane
problem.

2. Axial lattice with concentrated microstructure

Consider an axial lattice composed of n + 1 concentrated masses
connected by n linearly elastic springs (see Fig. 1). The axial lattice
(Born–Kármán lattice model with direct neighboring interactions)
is composed of n repetitive cells of length denoted by a = L/n, where
L is the total length of the axial chain. This model can be also

Fig. 1. Axial lattice in vibrations with concentrated microstructure. (a) Fixed–fixed
boundary conditions; (b) Fixed-free boundary conditions.

labeled as a Lagrange lattice since Lagrange investigated the dis-
crete string as well as the axial lattice and outlined the formal
equivalence between both systems [1]. The cell length a may  be
related to the microstructure of this lattice model, in connection
with interatomic distance or to some other microstructured length.
Fixed–fixed (Fig. 1a) and Fixed-free (Fig. 1b) boundary conditions
are investigated.

The elastic potential W of this discrete chain is given by
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where the stiffness of each spring k is calibrated such that k = EA/a.
Of course, it is formally possible to include in the following some
analogous mechanical problems such as the string or the torsional
problem, with relevant adaptation of notations. It is possible to
express the elastic potential in the following equivalent form:
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i=0

EA

2

[(
ui+1 − ui

a

)2
]

× a (2)

Now, considering a lattice system with concentrated mass proper-
ties (classical lattice system, as considered by Born–Kármán), the
kinetic energy of the discrete system can be written as:
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where each mass m is chosen to be equal to m = �A × a, except at
the boundary nodes where the mass is halved (see also Fig. 1). By
applying Hamilton’s principle to the lattice system (whose poten-
tial energy is given by Eq. (1) and kinetic energy is given by Eq. (2)),
one obtains the lattice equations:

EA
ui+1 − 2ui + ui−1

a2
− �Aüi = 0 (4)

This mathematical problem is similar to the vibration problem
of the discrete string already investigated by [1,45] (see the dis-
cussion in [15]). It appears noteworthy that [29] solved a similar
mathematical problem for the dynamics behavior of an n-storey
planar shear-type frame. It is worth noting that these differ-
ence equations associated with the lattice problem are the finite
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