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a  b  s  t  r  a  c  t

Non-viscous  damping  models  in  which  the  damping  forces  depend  on  the  past  history  of  velocities  via
convolution  integrals  over  some  kernel  functions  have  been  raised  in  many  engineering  fields.  This  paper
describes  an  explicit  computational  method  of dynamic  response  for  the  non-viscously  damped  structure
systems.  The  explicit  formula  is derived  using  the differential  property  of  convolution  and  the  central
difference  formula  of acceleration.  The  explicit  computational  procedure  of  dynamic  response  is given in
detail. Finally,  the  dynamic  responses  of  MDOF  structure  system  with  double  exponential  model  dampers
and SDOF  structure  system  with  Gaussian  model  damper  are  computed  using  the  proposed  explicit
method.  The  accuracy  and  efficiency  are  discussed  by comparison  with  other  two  developed  methods.

©  2015  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

The non-viscous damping has risen in many engineering fields.
For example, noise control in automobiles and airplanes [1], visco-
hyperelastic model for filled rubbers [2], passive vibration control
of buildings installed with viscoelastic dampers [3], ship dynamics
[4]. Adhikari [5] has summarized what type of structure systems
may  have non-viscous damping. Many non-viscous damping mod-
els have been proposed by the researchers in the recent decades
to deal with the non-viscous damping. For example, Biot [6,7]
damping model, Buhariwala [8] damping model, Bagley and Torvik
[9,10] damping models, Golla–Hughes–McTavish [11,12] damping
model, anelastic displacement field [13,14] damping model, Gauss-
ian damping model and exponential damping models [15,16]. The
non-viscous damping models, in which the damping forces depend
on the past history of velocities via convolution integrals over some
kernel functions, has been pointed out to be the most general damp-
ing model within the linear range by Woodhouse [17]. Therefore,
the governing equations of the non-viscously damped structure
systems often include convolution integrals.

Direct time-integration methods including the implicit methods
[18–20] and explicit methods [21–24] are successful to evaluate
the dynamic response of the viscous damping structure systems
subjected to complicated dynamic loadings, for example earth-
quake ground motions [25–28]. As for the non-viscously damped
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structure systems, Aprile and Benedetti [29] developed a direct
integration method for the structures with viscoelastic dampers.
Patlashenko et al. [30] developed the time-stepping schemes for
the linear Volterra-type systems of integro-differential equations
which may  arise in the semi-discrete finite element model of
dynamic viscoelasticity. Palmeri et al. [31] developed the state
space formulas for the linear viscoelastic dynamic systems with
memory and proposed the approximated frequency response
matrix for the state space formulas. Wagner and Adhikari [32]
extended the traditional state-space approach from the viscously
damped systems to nonviscously damped systems. Adhikari and
Wagner [33] developed a direct time-domain integration method
for exponentially damped linear systems based on an extended
state space representation of the equations of motion [32]. The
method is based on the linear approximations of displacement
and velocity. Liu [34] extended Newmark-� method from viscously
damped structure systems to non-viscously damped structure sys-
tems.

The purpose of this paper is to develop an explicit compu-
tational method of the dynamic response for the non-viscously
damped structure systems. First, the explicit dynamic response
formula is derived using the differential property of convolution
and the central difference formula of acceleration. The central dif-
ference formula of velocity can be avoided if the damping kernel
functions are derivable. Second, the explicit computational proce-
dure of dynamic response is given in detail. Finally, the dynamic
responses of MDOF structure system with double exponential
model dampers and SDOF structure system with Gaussian model
damper are computed using the proposed explicit method in this
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paper. The accuracy, efficiency, merits and limitations are discussed
by comparison with other two developed methods.

2. Explicit dynamic response analysis of non-viscously
damped structure systems

The governing equations of the non-viscously damped structure
systems can be expressed as

Mẍ(t) +
∫ t

0

G(t − �)ẋ(�) d� + Kx(t) = f (t) (1)

with initial conditions,

x(0) = x(0) and ẋ(0) = ẋ(0) (2)

where M is the mass matrix, K is the stiffness matrix, G(t) is a sym-
metric matrix of the damping kernel functions of the non-viscously
damped systems. x(t), ẋ(t) and ẍ(t) are the displacement, veloc-
ity and acceleration vectors, respectively. f(t) is the loading vector.
The convolution integral term is the damping force vector of the
non-viscously damped structure systems.

We  rewrite Eq. (1) as

Mẍ(t) + G(t) ∗ ẋ(t) + Kx(t) = f (t) (3)

The damping kernel functions of many non-viscous damp-
ing models, i.e., Golla–Hughes–McTavish (GHM) model, anelastic
displacement field (ADF) model, Gaussian damping model and
exponential damping model, etc., are derivable. The first deriva-
tives of these damping kernel functions with respect to the time
variable are also smooth and continuous. Therefore, according to
the differential property of convolution, Eq. (3) can also be written
as

Mẍ(t) + Ġ(t) ∗ ẋ(t) + Kx(t) = f (t) (4)

The central difference formulas of the velocity and acceleration
are, respectively,

ẋ(t) = 1
2�t

[x(t + �t)  − x(t − �t)] (5)

ẍ(t) = 1
�t2

[x(t + �t)  − 2x(t) + x(t − �t)] (6)

where �t  is the sampling time interval.
Compared to Eq. (3), Eq. (4) can avoid using the difference for-

mula of the velocity. Therefore, the convolution term could be
simplified and the computational efficiency could be improved. By
substituting Eq. (6) into Eq. (4), we have

Mx(t + �t) = [f (t) − Kx(t) − Ġ(t) ∗ x(t)]�t2 + M[2x(t) − x(t − �t)]

(7)

Let the time station t = i�t  (i = 1, 2, . . .,  n), Eq. (7) is rewritten as

Mx[(i+1)�t] = [f (i�t) − Kx(i�t) − Ġ(i�t) ∗ x(i�t)]�t

+ M{2x(i�t) − x[(i−1)�t]} (8)

The rectangular rule of numerical integration is used to calculate
the convolution term, Eq. (8) becomes

Mx[(i+1)�t] =
{

f (i�t) − Kx(i�t) −
i∑

k=0

Ġ(k�t)x[(i−k)�t]

}
�t2

+ M{2x(i�t) − x[(i−1)�t]} (9)

The mass matrix M of the structure system is the diagonal matrix
if the lumped mass is employed to model the structure. There-
fore, Eq. (9) is the explicit formula for the displacement response.
Obviously, Eq. (9) is completely uncoupled and no matrix inversion
is required. However, Eq. (9) indicates that x[(i−1)�t] and x(i�t) are
needed to be known to calculate x[(i+1)�t].

In order to compute x(�t), we  need to know x(−�t) and x(0). The
initial conditions x(0) and ẋ(0) in Eq. (2) are known. Therefore, we
just need to calculate x(−�t) and the step-by-step march can start.
At the time station t = 0, the acceleration ẍ(0) is calculated using Eq.
(1), i.e.,

Mẍ(0) = f (0) − Kx(0) (10)

At the time station t = − �t,  the displacement x(−�t) is approxi-
mated using Taylor series expansion at the time station t = 0,

x(−�t) = x(0) − �tẋ(0) + 1
2

�t2ẍ(0) (11)

Now, x(0) and ẋ(0) are known (initial conditions), ẍ(0) is cal-
culated using Eq. (10). x(−�t) can be computed using Eq. (11).
Therefore, x(�t) can be calculated using Eq. (9) because both x(−�t)
and x(0) are already known. The step-by-step march can start.

3. Explicit computational procedure

When the first derivatives of the damping kernel functions are
smooth and continuous, the explicit computational procedure for
the non-viscously damped structure systems is summarized as fol-
lows.
1.0 Initial calculations

1.1 Compute M,  K, select �t and calculate matrix Ġ(k�t) , (k = 0, 1,2, . . . ,n)
1.2 Solve M

..
x(0) = f (0) − Kx(0) ⇒ ẍ(0)

1.3 Solve x(−�t) = x(0) − �tẋ(0) + 1
2 �t2ẋ(0) ⇒ x(−�t)

1.4 Set i = 0
2.0 Calculation for each time station

2.1 Solve

Mx[(i+1)�t] =

{
f (i�t) − Kx(i�t) −

i∑
k=0

G(k�t)x[(i−k)�t]

}
�t2 + M{2x(i�t) − x[(i−1)�t]}

⇒  x[(i+1)�t]

2.2 For the next time station. Replace i by i + 1 and repeat Step 2.1.

4. Examples

In this section, the dynamic responses of MDOF structure sys-
tem with double exponential model dampers are studied using
the previously described method, implicit method proposed by
Liu [34], and the method proposed by Adhikari and Wagner [33].
The dynamic responses of SDOF structure system with Gaussian
model damper are investigated using both the previously described
method and implicit method proposed by Liu [34]. The merits
and limitations are also discussed. All the computations are per-
formed on a personal computer with a Windows 7 (Microsoft,
Redmond, Washinton) operating system. The computer has an
AMD Phenom II×2550 Processor (Advanced Micro Devices, Sun-
nyvale, California), and the frequency of the CPU is 3.10 GHz. The
computer also has 4 GB random-access memory.

4.1. MDOF structure system with double exponential model
dampers

The mass matrix of MDOF structure system with N degree of
freedom is

M = Im1 (12)

where I is a N × N identity matrix. And m1 = 2 kg in this case.
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