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a  b  s  t  r  a  c  t

The  U-tube  granular  instability  is  understood  as a tendency  to  increase  of the  height  difference  �h
between  the  granular  material  in both  branches  of  a vertically  vibrated  U-tube.  �h  has  been  reported  to
increase  exponentially  with  time  for a certain  range  of  experimental  parameters.  A simple  model  based
on a cyclic  fluid/solid  response  of  the  granular  material  has been  used  to  explain  the  dependence  of  the
exponential  growth  rate  � with  the  maximum  dimensionless  acceleration  � of vibration,  at  least  within
a  certain  range  of  applicability.  We  introduce  an  analytic  solution  of  the  model  and  use  it to  discuss  the
effect  of  several  parameters  on � .  The  original  model  could  not  predict  an  abrupt  decrease  of  �  observed
at  large  �. In  this  work  we  show  how  considering  a �  dependent  delayed  coupling  between  the  granular
material  and  the  vibrating  tube  allows  the  model  to describe  the  rapid  decrease  of  �  seen  at  large  � and
provides  a new  perspective  to understand  this  behavior.

© 2015  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Vibrated granular materials show a wide display of interesting
phenomena, for example segregation, energy localization, Lei-
denfrost effect, granular fountains, among others. A particularly
interesting set of phenomena is the one showing symmetry break-
ing and spontaneous upward flow. The interest lies not only in the
counter-intuitive behavior of the vibrated granular materials and
the theoretical challenge to model them, but also on the applied
possibilities regarding bulk solids transport [1–4]. One of these phe-
nomena is the granular U-tube instability (see Fig. 1), understood
as a tendency to increase the height difference between the level
of grains in both branches of a vertically vibrated U-shaped con-
tainer, partially filled with fine sand [5–12]. Earlier research has
identified the interstitial air as a key factor in the development of
the instability.

Some theoretical attempts to model the U-tube granular insta-
bility have been previously published. Gutman [13] proposed a
mechanism based on the development of an horizontal pressure
difference between the bottom of the granular columns at each
branch. This pressure difference will be responsible for dragging
granular material from the lower branch to the tallest. Rajchenbach
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[14] proposed a mechanism based on an internal convective cur-
rent, from regions of large compaction to less compacted regions, he
used the term dilatant process. Rajchenbach noted that a combina-
tion of this internal current and the compensating effect of surface
avalanches could explain the formation of a heap (bunkering) in
vibrated beds with rectangular containers. In the case of U-tubes,
the lack of surface avalanches will let the convective current drive
the majority of the material towards one branch of the tube. Nei-
ther Gutman nor Rajchenbach implemented their mechanisms in
a mathematical model able to make quantitative predictions. A
one dimensional model based on a cyclic fluidization scenario was
proposed in references [5,7]. This model was able to explain the
dependence of � with �, except for cases with large wall friction.
Based on the mechanism proposed by Gutman, but using a simpler
model for the behavior of a vibrated bed, Clement et al. [9] proposed
a model able to describe the time evolution of �h  in a case where
water was used as the interstitial fluid.

2. Cyclic fluidization model

Retaking the theoretical proposal of references [5,7], the tube
is assumed to oscillate along a direction parallel to that of the
acceleration of gravity, with a time dependent position z = a sin(ωt)
measured from a stationary reference frame (see Fig. 2), where a
is the amplitude, and ω = 2� f with f the frequency of oscillation.
During a single oscillation cycle, it is assumed that the material
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Fig. 1. Snapshot sequence showing the evolution of 180-212 �m glass beads in a vertically vibrated U-shaped acrylic container, like the one used in reference [7] (1 s between
consecutive images).

Fig. 2. Quantities considered by the cyclic fluidization model.

within the tube behaves as a liquid during the interval (t0, t0 + �),
and during the rest of the cycle the material is fully jammed.1 Here
t0 = ω−1 arcsin(g/(aω2)) (with g the acceleration of gravity) is the
take off time of a point mass moving on a vibrating plate with
position given by z (this is a common assumption for the study
of vibrating granular beds). The time during which the granular
material is considered as a liquid is � = 2ω−1 arccos(g/(aω2)), this
particular value corresponds to the time during which the effective
acceleration felt in a reference frame moving with the container is
greater than g in magnitude and points in the opposite direction of
gravity. This effective acceleration is gef = aω2 sin(ωt) − g, therefore
� is taken as the time during which gef > 0.

According to Fig. 2 �h(t) = 2y(t). The following one dimensional
equation of motion is used to model the evolution of y (see refer-
ences [5,7] for a more detailed discussion):

Mg
d2y(t)

dt2
+ �

dy(t)
dt

− 2A	
[
aω2 sin(ωt) − g

]
y(t) = 0, (1)

where Mg is the mass of the granular bed, � is a viscous coef-
ficient, A is the cross-sectional area of the tube and 	 is the bulk
static density of the granular material. An approximate solution to
Eq. (1) was proposed in reference [5] and a full numerical solution
was introduced in reference [7]. In the following lines we  introduce
an analytical solution.

2.1. Analytical solution to the equation of motion

Using an integral factor u(t) = e(1/2)
 t with 
 = �/Mg, we  can
remove the term dy(t)/dt from Eq. (1) and obtain:

d2V(t)

dt2
+

[(
b − 
2

4

)
− c sin (ω t)

]
V(t) = 0, (2)

1 The original suggestion of the cyclic fluidization scheme is due to P. de Gennes, as
indicated by Rajchenbach in reference [14], and it has been implemented with suc-
cess in a model for reverse buoyancy [15]. Experimental evidence has been reported
in  reference [16].

where V(t) = u(t)y(t), b = 2A	g/Mg and c = b�. After substituting
ωt = (2 z + �/2), Eq. (2) reduces to the so-called Mathieu equation 2:

d2V(z)

dz2
+

[
4b − 
2

ω2
− 4c

ω2
cos(2 z)

]
V(z) = 0. (3)

Eq. (3) has a general solution given in terms of a linear combi-
nation of two  special functions known as MathieuC and MathieuS
[17]:

V(z) = D1MathieuC

(
4b − 
2

ω2
,

2c

ω2
, z

)

+ D2MathieuS

(
4b − 
2

ω2
,

2c

ω2
, z

)
(4)

Returning the change of variables gives the general solution of
Eq. (1):

y(t) = D1e− 1
2 
 tMC(t) + D2e− 1

2 
 tMS(t) (5)

where the symbols MS(t) and MC(t) stand for Math-
ieuS(((4b−
2)/�2), (2c/ω2), (ω t/2) − (�/4)) and MathieuC(((4b-

2)/�2),(2c/ω2), (ω t/2) − (�/4)) respectively. Constants D1 and D2
follow from imposing initial conditions y(t0) = y0 and, since the
material is supposed to be blocked before the fluidized portion
of the cycle, the initial condition for the time derivative of y is
dy(t0)/dt = 0. Therefore:

D1 = y0e

t0

2

[
MS′(t0) − (
/ω)MS(t0)

MS′(t0)MC(t0) − MC′(t0)MS(t0)

]
(6)

D2 = y0e

t0

2

[
MC′(t0) − (
/ω)MC(t0)

MC′(t0)MS(t0) − MC(t0)MS′(t0)

]
(7)

where primed expressions indicate a derivative with respect to
t.

To illustrate the cyclic fluidization process we show the evolu-
tion of the solution y(t) given by expression 5 during four cycles of
oscillation at the left side of Fig. 3. Straight horizontal sections cor-
respond to the portions of the oscillation cycle where the granular
material is supposed to be blocked and does not flow. Increasing
y sections, with a duration of � each, correspond to the time dur-
ing when the solution to the equation of motion is considered. The
global initial condition y0 was arbitrarily set to 3 mm.  Each subse-
quent cycle is solved using as new initial condition for y the final
position of the previous cycle.

2 The Mathieu equation was  originally studied to solve the modes of vibration of
an  elastic membrane with elliptical boundary.
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