Accepted Manuscript

Effect of chromium doping on the structure and band gap of Bi_{3.15}Nd_{0.85}Ti₃O₁₂ thin films

Qingqing Ma, Yahui Shu, Zhenzhong Ding, Lin Cao, Xiaoqin Chen, Fujun Yang

PII: S0925-8388(18)32808-1

DOI: 10.1016/j.jallcom.2018.07.307

Reference: JALCOM 47023

To appear in: Journal of Alloys and Compounds

Received Date: 21 May 2018 Revised Date: 24 July 2018 Accepted Date: 26 July 2018

Please cite this article as: Q. Ma, Y. Shu, Z. Ding, L. Cao, X. Chen, F. Yang, Effect of chromium doping on the structure and band gap of Bi_{3.15}Nd_{0.85}Ti₃O₁₂ thin films, *Journal of Alloys and Compounds* (2018), doi: 10.1016/j.jallcom.2018.07.307.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Effect of chromium doping on the structure and band gap of

 $Bi_{3.15}Nd_{0.85}Ti_3O_{12}$ thin films

Qingqing Ma, Yahui Shu, Zhenzhong Ding, Lin Cao, Xiaoqin Chen*, Fujun Yang*

Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei Key

Laboratory of Ferro & Piezoelectric Materials and Devices, Faculty of Physics & Electronic

Sciences, Hubei University, Wuhan, 430062, PR China

ABSTRACT

The Bi_{3.15}Nd_{0.85}Ti₃O₁₂ (BNdT) and Cr-doped BNdT films on quartz substrates

were prepared by a sol-gel process and the effects of Cr doping on the structure and

band gap of BNdT were examined. Cr-doping does not change the three-layered

perovskite structure of BNdT but transforms the grain morphology from equiaxed

grains to rectangular grains. The utilization of visible light is increased by Cr doping

and the large band gap reduction (~1.1 eV) was obtained, which is analyzed from the

electronegativity and the distortion caused by substitution. The present work provides

an available way to make ferroelectric (FE) BNdT getting more extensively applied in

the new photovoltaic cells and other novel optoelectronic devices.

Keywords: Bismuth neodymium titanate; Band gap; Films; Sol-gel

*Corresponding author.

E-mail address: chxq@hubu.edu.cn (X.Q. Chen), fujunyang@hubu.edu.cn (F.J. Yang)

Download English Version:

https://daneshyari.com/en/article/7990298

Download Persian Version:

https://daneshyari.com/article/7990298

Daneshyari.com