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a  b  s  t  r  a  c  t

We  show  the  existence  of  certain  new  waves  that  can  propagate  near  an  interface  between  two  half-
spaces  of different  piezoelectric  ceramics,  where  the  interface  is  modeled  by  a membrane  with  the
surface/interface  elasticity  [1].  The  current  configuration  can  be  reduced  into  a number  of  well-known
results  as  special  cases,  such  as  Love  wave,  Bleustein  and  Gulyaev  wave.  Together  with  our  previous  work
for the imperfect  interface  [2], a  full range  of consideration  of the  interface  affecting  the  anti-plane  waves
is  now  completed.

© 2015  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Anti-plane piezoelectric wave near a free surface with exponen-
tial decay feature was firstly derived by Bleustein [3] and Gulyaev
[4]. The derivation was then extended to the configuration of a wave
near an interface between two piezoelectric half-spaces by Maer-
feld and Tournois [5]. More recently, Fan et al. [2] showed a set of
interface waves by considering a weakened interface described by
the so-called spring-model. In the present paper, with consider-
ation of the interface elasticity under the frame work of Gurtin and
Murdoch [1], we find a new set of interfacial waves. Together with
our previous work [2], the interface waves are classified in a full
range condition of the interfaces, which will be summarized in our
concluding remarks.

Consider two ceramic half-spaces with an interface. The x1 and
x3 axes are in the interface where x2 = 0. x2 > 0 is occupied by
ceramic A and x2 < 0 by ceramic B. The ceramics are poled along
the x3 or −x3 direction. Consider the so-called anti-plane motions.
The displacement vector and the electric potential are given by
u1 = u2 = 0, u3 = u(x1, x2, t) and � = �(x1, x2, t). A function,  , can be
introduced [3] through � =   + eu/ε, where e = e15 and ε = ε11 are
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the relevant piezoelectric and dielectric constants. The governing
equations for u and   in the half-spaces are given by [3]:

c̄A∇2uA = �AüA, ∇2 A = 0, x2 > 0,

c̄B∇2uB = �BüB, ∇2 B = 0, x2 < 0,
(1)

where c̄ = c + e2/ε,  and c = c44 is the relevant elastic constants. ∇2

is the two-dimensional Laplacian. The subscripts A and B indicate
quantities in ceramic A and ceramic B. For an interface wave, we
require all fields to vanish when x2→ ± ∞.  For x2 > 0, consider the
possibility of the following waves propagating in the x1 direction:

uA = UA exp(−�Ax2) cos(�x1 − ωt),

 A = �A exp(−�x2) cos(�x1 − ωt),
(2)

where UA and �A are undetermined constants, ω and � are the
frequency and wave number, and

�2
A = �2 − �Aω2

c̄A
= �2

(
1 − v2

v2
A

)
> 0, (3)

where v = ω/� and v2
A = c̄A/�A. For the continuity conditions, we

need explicitly expression of T23 and D2 in ceramic A, denoted by
TA and DA:

TA = c̄AuA,2 + eA A,2 = −[c̄A�AUA exp(−�Ax2)
+eA��A exp(−�x2)] cos(�x1 − ωt),

DA = −εA A,2 = εA��A exp(−�x2) cos(�x1 − ωt).

(4)
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Similarly, for x2 < 0, the solution is

uB = UB exp(�Bx2) cos(�x1 − ωt),

 B = �B exp(�x2) cos(�x1 − ωt),
(5)

�2
B = �2 − �Bω2

c̄B
= �2

(
1 − v2

v2
B

)
> 0,

v2
B = c̄B

�B
.

(6)

TB = c̄BuB,2 + eB B,2 = [c̄B�BUB exp(�Bx2)
+eB��B exp(�x2)] cos(�x1 − ωt),

DB = −εB B,2 = −εB��B exp(�x2) cos(�x1 − ωt).

(7)

The solutions A and B are jointed along the interface. For the
interface continuity conditions, we need to consider the interface
elasticity before we set up the conditions.

2. Interface mechanics and continuity conditions

The equilibrium conditions on the surface incorporating inter-
face/surface elasticity are given by [1]

[T˛jnj] + ˙ˇ˛,ˇ = �sü˛ (tangential direction)

[Tijninj] = ˙˛ˇ	˛ˇ, (normal direction)
(8)

where ˛,  ̌ = 1 and 3; Latin letters take 1, 2 and 3; ni is the unit
normal vector to the surface, the bracket [∗] denotes the jump of
the quantities across the surface, ˙˛ˇ is the surface stress ten-
sor and 	˛ˇ is the curvature tensor of the surface. In addition, the
constitutive equations on the isotropic surface are given by [1]

˙˛ˇ = 
0ı˛ˇ + (�s − 
0)(u˛,ˇ + uˇ,˛) + (�s + 
0)u
,
ı˛ˇ

+ 
0uˇ,˛ (9)

where 
0 is the surface tension, �s and �s are the two surface Lame
constants in the dimension of N/m.

For the above defined anti-plane problem, Eq. (8) is simplified
as

˙13,1 + (T23)+ − (T23)− = �sü3, along the interface (10)

Using of Eq. (9) and assuming interface deform together with
the half-spaces, we can further express Eqs. (10) into

(T23)+ − (T23)− = �sü3 − �su3,11 (11)

An alternative derivation was given by Benveniste and Miloh
[6] and Ma  et al. [7] for the static case of (11). Eq. (11) represents
a simplest attempt to address the interface effect. We  noticed that
the interface constitutive equations can be in a more sophisticated
version. For example, Fang et al. [10] presented a set of piezoelectric
interface constitutive equations for their study of nano-particles.
Also, a fully nonlinear constitutive interface theory was  available
[11].

We  consider two types of interfaces, namely, (i) an electroded
interface and (ii) an unelectroded interface separately below.

First consider the case when the interface is a grounded elec-
trode. We  have, at x2 = 0,

uA = uB,

TA − TB = �süA − �suA,11,

 A + eA
εA
uA = 0,

 B + eB
εB
uB = 0.

(12)

The second line of the above Eq. (12-2) is the effect of interface
elasticity, translated from (11). More precisely, the first term on

the right hand-side of (12-2) is the inertia effect, while the second
term is the elastic effect. A numerical demonstration in Section 3
will reveal their contributions to the interface wave. Substitution
of (2), (4), (5) and (7) into (12) results in a system of linear homoge-
nous equations for UA, �A, UB and �B. For nontrivial solutions, the
determinant of the coefficient matrix has to vanish, which yields
the following frequency equation that determines the wave speed
v:

[c̄A(�A − k̄2
A�) + c̄B(�B − k̄2

B�)] = �sω
2 − �s�

2, (13)

where k̄2
A = e2

A/(c̄AεA) and k̄2
B = e2

B/(c̄BεB). Clearly, the waves are dis-
persive. This may  be somewhat unexpected as there is no geometric
characteristic length in the problem. Mathematically, the disper-
sion is caused by that the interface condition in (12) involves both
u and its first and second order derivatives.

Let us rewrite (13) as

c̄A

((
1 − v2

v2
A

)1/2

− k̄2
A

)
+ c̄B

((
1 − v2

v2
B

)1/2

− k̄2
B

)

= �s�

(
v2

v2
s

− 1

)
(14)

where v2
s = �s/�s.

We will conduct a numerical demonstration of (14) in Section 3,
where the gold or aluminum thin membrane joints PZT-5H ceramic
half spaces.

To gain some insight into (14), we consider the following special
cases:

(i) No interface elasticity effect. Eq. (14) with zero right hand side
is read as

c̄A

(
1 − v2

v2
A

)1/2

+ c̄B
(

1 − v2

v2
B

)1/2

= e2
A

εA
+ e2

B

εB
(15)

which is the velocity equation for the interfaces waves when
the bonding is the so-called perfect condition, given by Maer-
feld and Tournois [5].

(ii) No piezoelectricity effect: k2 = 0

cA

(
1 − v2

v2
A

)1/2

+ cB

(
1 − v2

v2
B

)1/2

= �s�

(
v2

v2
s

− 1

)
(16)

This is an extended configuration of Love wave. The above
presentation indicates the range of the interfacial wave speed
as

vs ≤ v ≤ vA

and

vs ≤ v ≤ vB. (17)

(iii) Let all the material properties of half-space B to be zero, we are
considering a half-space coated with a thin electrode.

c̄A

((
1 − v2

v2
A

)1/2

− k̄2
A

)
= �s�

(
v2

v2
s

− 1

)
(18)

If we drop the surface effect in Eq. (18), we have

c̄A

((
1 − v2

v2
A

)1/2

− k̄2
A

)
= 0 (19a)
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