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a  b  s  t  r  a  c  t

The  present  paper  gives  a  comparison  of  the  Maxwell,  Upperconvected  Maxwell  and  the  Oldroyd-B
model  for  the  calculation  of dissipation  in  high  shear-rate  cases.  Usage  of  viscodampers  in  the  automotive
industry  is the  most  common.  There  is  a good  scope  of  the  computing  this  power  in  the  case  of  Newtonian
fluids.  When  a polymeric  liquid  is  considered  that  part of  energy  that is  irreversible  cannot  be  calculated
as  Pdiss. = �  : d. For  fluids  where  the  separation  into  a solvent  and  a polymer  part  is  not  available  but
the deformation  gradient  tensor  must  be separated  into  two parts.  One part  consists  of  only  the  elastic
deformation  while  the  other is the  non-elastic.  This  paper  shows  this  separation  using the Maxwell  and
the  UCM  models.  A  simple  problem  is  shown,  solving  both  analytically  and numerically.  The steady  state
temperature  distribution  of a damper  then  is validated  with  measurement.

©  2015  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Many complex fluids of interest exhibit a combination of vis-
cous and elastic behavior under strain. Examples of such fluids are
polymer solutions and melts, oil, toothpaste, and clay, among many
others. The Oldroyd-B fluid presents one of the simplest constitu-
tive models capable of describing the viscoelastic behavior of dilute
polymeric solutions under general flow conditions. Despite the
apparent simplicity of the constitutive relation, the dynamics that
arise in many flows are complicated enough to present a consid-
erable challenge to numerical simulations. The flow of a polymeric
or viscoelastic liquid is considered in this paper. These fluids have
a very complex set of properties, the first and second normal stress
coefficients  1,  2 can be observed. Unlike Newtonian fluids there
are normal stresses which are unequal.

There are several fluids that cannot be described in such a sim-
ple way. These typically non-Newtonian fluids have much more
complex features. These fluids include polymeric liquids, polymer
melts, soap solutions, suspensions, and emulsions. The material
parameters for Newtonian fluids depend on temperature and pres-
sure but not on the velocity gradient. For non-Newtonian fluids
these parameters highly depend on the velocity gradients and they
produce elastic effects. In some circumstances these polymeric and
other high viscosity fluids can produce heat. This production can be
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useful but sometimes needs to be resolved. In the field of engi-
neering this is an important problem. For Newtonian fluids the
dissipation can be calculated as

Pdiss. = � : d, (1)

where d = 1
2

(∇v + ∇vT
)

. The calculation is well known [1–10].
This method is quite simple for Newtonian fluids and for the
Maxwell model. For polymeric liquids, whose stress cannot be sepa-
rated into a solvent and a liquid part, this computation leads to high
errors if the dissipation is calculated as given in (1). The Maxwell
model is widely used by engineers because of its simplicity. On  the
other hand this cannot be used as a constitutive equation because it
is not objective. Viscoelastic models are also known for describing
non-Newtonian fluids. These are good when we want to observe
small displacements. The third way is the use of non-linear vis-
coelastic models. These are partial differential equations and give
a very accurate presentment for these fluids.

In this paper the calculation of the dissipated power is pre-
sented if the material model is viscoelastic. The presented following
method is compared in an analytical model and this result is used
to check with measurements.

2. Governing equations

1 Continuity equation

∇u = 0, (2)
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where ∇ denotes the divergence operator.
2 Equation of motion

∂
∂t
�u = −∇�uu − ∇� + �g, (3)

where � is total stress tensor,
3 Energy equation

∂
∂t
�U = −∇�Uu − ∇q − � : ∇u, (4)

where � denotes density, U is the internal energy per mass unit,
q is the heat flux and the last term is dissipated power.

The equation of an equaly linear and elastic fluid is the Maxwell
model

� + �
.
� = −2�0d, (5)

where � = �0
G is the time constant (relaxation time) and �0 is the

zero shear rate viscosity. This model is not suitable to use as a
constitutive equation so the Upper Convected Maxwell (UCM) and
Oldroyd-B model are introduced

� + �
�
� = −2�0d, (6)

� + �0

G

(
∂�

∂t
+ u · ∇� − (∇u)T� − �(∇u)

)
= −2�0d. (7)

The equation of the Oldroy-B fluid is

� + �
�
� = −2�0(d + �1

�
d), (8)

where �1 is the retardation time.The problem introduced in this
paper used cylindrical coordinate system. Due to the axial symme-
try the following simplification can be taken

∂
∂ϕ

≡ 0. (9)

3. Computing the dissipated power

In case of Newtonian fluids it is known that the dissipated power
of such fluid can be calculated as Eq. (1). If the material model
that is used to describe the behaviour of the fluid can be mod-
elled as springs and dashpots connected in series and/or parallel
Eq. (1) cannot be used. This way of calculating the dissipation gives
higher values than real world measurement, because this takes into
account the deformation of the spring(s). Instead of d a term that
contains only the deformation(s) of the dashpots is needed. For this
d is split into two parts. The equation of energy can be derived if
the dot product of the equation of motion

�Cp
DT

Dt
= − (∇q) −

(
∂ ln �

∂lnT

)
p

Dp

Dt
− (� : ∇u) . (10)

The last term of the right side is the viscous dissipation. This part
of the mechanical energy is irreversible. In most cases this term is
negligible, but for high deformation gradients it may have a very
significant value

Pdiss. = −� : ∇u. (11)

The stress and the velocity gradient appear in the formulae. For each
arbitrary material model the solution is to calculate � and insert it to
the equation. For Newtonian fluids the viscous dissipation is always
positive. The material law of such a fluid is rather simple, so it can
be easily inserted into Eq. (11). Then it becomes

−� : ∇u = 1
2
�0

∑
i

∑
j

[(
∂ui
∂xj

+ ∂uj
∂xi

)
− 2

3
(∇u) ıij

]2

+ �(∇u)2, (12)
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Fig. 1. The computational domain

where ıij is the Kronecker delta, which is 0 if i /= j and 1 if i = j and
� is the diffusivity of fluid.

For those polymers that can be separated to a solvent and a
polymer section, such that � = �s + �p holds, the dissipation can be
calculated as Eq. (11). The original calculation leads to high errors
if the dissipated power is needed.

The Maxwell model cannot be used in this way. The material law
of such fluid cannot be arrenged for the stress � in a closed form so
it cannot be inserted into Eq. (11). So the other way is to try to calcu-
late the anoter term in Eq. (11) to calculate the plastic deformation.
Different material models can be built by springs and dashpots con-
nected parallel and/or in series. If this model contains dashpots
and springs the calculation of the viscous dissipation needs only
those deformations that occur in the dashpots. The deformation of
the springs are reversible. So the rate of strain tensor should be
separated. Suppose that the deformation gradient tensor d can be
written as

d = .
�
d

+ .
�
s
, (13)

where �.
d

is the rate of strain tensor of the dashpot and �.s is the
rate of strain of the springs.

Namely the rate of strain tensor can be separated into the sum
of two tensors. One describes the deformation of the elastic parts
of the model while the other the plastic deformation. By definition,
analogous to Hooke’s law in strength of materials the reversible
part is

.
�
s

:= 1
G

∂�

∂t
, (14)

D
Dt� = D

Dt
� + 1

2

(
� · � − � · �

)
, (15)

where � = ∇u − (∇u)T and � is arbitrary tensor.
Thus for a fluid with arbitrary material constitutive equation the

viscous dissipation can be calculated as

Pdiss. = � :
1
2

�̇d. (16)

Here

�̇d = 1
2

(∇v + ∇vT
)

− 1
G

(
∂�

∂t
+ v∇�

)
. (17)

3.1. Analytical solution in cylindrical coordinate system

For comparing the two chosen material models, the Maxwell
and the UCM, axisymmetric geometry was  used. The computational
domain can be seen in Fig. 1. The velocity vector is

ur,	,z =

⎡
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0
rz

h

0 sin ωt

0

⎤
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