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a  b  s  t  r  a  c  t

Multiple  cracks  interaction  plays  an important  role  in fracture  behavior  of materials.  A number  of  studies
have  been  devoted  to analytical  and  numerical  analyses  of the  doubly  periodic  arrays  of cracks.  A  very
natural  and  highly  accurate  solution  procedure  is  proposed  to describe  the  interaction  effect  among
the  doubly  periodic  rectangular-shaped  arrays  of cracks.  The  proposed  solution  is  implemented  in  the
framework  of  continuously  distributed  dislocation  model  and  singular  integral  equation  approach.  The
accuracy  of  this  solution  is  proved  through  a comparison  of results  from  the  present  simulation  and
known  closed  form  solutions.  Further,  the interaction  effects  among  the periodic  cracks  on the plastic
zone  size  and  crack tip opening  displacement  are  studied.  It is  found  that  the interaction  distance  among
the  vertical  and  horizontal  periodic  cracks  is quite  different.
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1. Introduction

In this paper, we shall discuss a problem in the theory of elastic-
plastic solids during a study of doubly periodic rectangular-shaped
arrays of cracks in an infinite elastic-plastic solid. The exact deter-
mination of the influence of plastic yielding on the stress and
deformation near the root of the cracks or notches is of basic
importance for such elastic-plastic fracture mechanics problems
[1]. Historically the Irwin model [2] and Dugdale model [3] are
two such methods used to estimate the plastic zone size (PZS)
for a crack in homogeneous materials. Dugdale [3] proposed one
method for removing this singularity near the crack tip from the
angle of linear-elastic fracture mechanics. The requirement is made
that near the edge of the crack a plastic yield condition is satis-
fied. The region over which yield occurs is determined by requiring
that the stresses remain finite everywhere. An alternate approach
is the simpler elastic-plastic problems under longitudinal shear [4].
Afterwards, Barenblatt [5] presented another method to cope with
this problem. He postulated a system of stresses existing at the
edge of the crack that inhibits the occurrence of infinite stresses
at the edge of the crack. These he called “cohesive stresses” and
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he developed a universal constant called the Modulus of cohesive
to define the stresses. The discussions about the single crack and
the infinite sequence of cracks from the standpoint of the theory of
dislocations of dislocations have also been completed [6–8]. Two
isolated crack problems containing a slit under anti-plane shear
and a penny-shaped crack are studied by Keer and Mura [9]. In their
work, a Tresca yield condition is used in both cases to ensure that all
stresses are bounded. An exact linear elastic-perfectly plastic solu-
tion is presented for the problem of a sharp notch (or, when the
notch angle is zero, a crack) in a plane of finite width subjected to
anti-plane stresses inducing a stress and deformation stare of longi-
tudinal shear by Rice [1]. The behavior of a crack under longitudinal
shear taking some account of plasticity and cohesive forces near the
crack tips is considered by Kostrov and Nikitin [10]. Panasyuk and
Savruk [11] surveyed theoretical solutions to elastoplastic treat-
ments in which the plastic zones are simulated as plasticity bands.
Using the solution of an edge dislocation interacting with a cir-
cular inclusion as the Green’s function, recently, Hoh et al. [12]
investigated the Dugdale crack behavior near a circular inclusion.

The fracture problem of a doubly periodic array of cracks con-
tained in an infinite solid has been a continuing problem for
decades. There are in essence two methods to the solution of the
problem. The first class of approaches is based on Muskhelishvili’s
complex potential method. Firstly, there is the boundary collo-
cation approach of Isida and Igawa [13] using a combination of
Muskhelishvili’s complex potential and distributed force doublets.
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In addition, based on the complex potentials of Muskhelishvili,
Ioakimidis and Theocaris [14] dealt with curved cracks in doubly
periodic arrays by using the doubly periodic functions. By combin-
ing the elliptical function theory and conformal mapping technique,
Hao [15] obtained an exact solution to the antiplane problem of
doubly periodic cracks for the first time. Tong et al. [16] improved
Hao’s work sufficiently, and derived a closed form solution for
an isotropic piezoelectric material with a doubly periodic array
of cracks under far-field antiplane mechanical load and inplane
electrical field. Under the similar method, the further studies of
doubly periodic array of cracks or rigid-line in different materials
are discussed completely [17–19]. Besides, Li [20,21] used complex
potential methods to solve the fundamental complete plane strain
problems of a three dimensional nonhomogeneous elastic body
with a doubly periodic set of cracks or cylindrical inlay. The sec-
ond method to solve the doubly periodic array of cracking problem
relies on the equivalence between cracks and appropriate dislo-
cations (i.e. the continuously distributed dislocation model). Bilby
and Eshelby [22] first proposed the method of distributed dislo-
cations to solve the crack problem. Karihaloo [23] extended his
work, modeling the stress relaxation process at the tip of each crack
in rectangular and diamond shaped arrays. But some errors often
occur due to the convergence obstacle of double infinite summa-
tion in the solution procedure. Finally, the numerical accuracy of
the solution procedure has been well solved by Karihaloo et al. [24]
and Karihaloo and Wang [25]. In addition, researches of effective
elastic properties of cracked solids have also been widely con-
cerned. Nemat-Nasser et al. [26] and Nemat-Nasser and Yu [27]
presented a systematic method for estimating the overall proper-
ties of solids with periodically distributed cracks. In their work,
the overall elastic moduli, crack opening displacements and stress
intensity factors for a more general and complex doubly periodic
crack model (i.e. solids with periodically distributed perpendicular
2-D line cracks) are studied. Besides, Kachanov and his co-authors
presented a series of studies to explicate the effect of crack interac-
tions on overall mechanical behavior and emphasized particularly
that crack interaction has a significant influence on macroscopic
mechanical properties. Kachanov [28] pointed out that the crack
interaction problems can be formulated in terms of the interac-
tion tractions. His simple model sheds some light on the character
of interactions and clarifies the nature of various approximation
processes. Kachanov’s method is applied to study the intersecting
cracks problem, in both 2-D [29] and 3-D [30] configurations. In
the problem of the effective elastic properties of cracked solids,
this simple method is also sufficient for the numerical simulations
of the effective properties [31].

The present work constitutes a continuing study in questing for
a very natural and highly accurate solution procedure to study the
elastic-plastic behavior for the doubly periodic rectangular-shaped
arrays of cracks under the longitudinal shear. If a body contains a
number of internal cracks, the spread of plasticity from any one is
influenced by the presence of the others and a change in behav-
ior is again expected when the plasticity has spread completely
from one to another. However, it is seen that elastic-plastic solu-
tions to the problems of doubly periodic arrays of cracks are very
limited, and are highly desirable and attractive. In the framework
of continuously distributed dislocation model, a new method takes
full advantage of the periodic symmetry to avoid the appearance of
double infinite summation, which is wrongly considered inevitable
using such dislocation model. Thus, errors of a double infinite sum-
mation are disappeared, and the accuracy increases. The present
solution procedure can be made as accurate as desired from the
closed form solution for the linear elastic fracture problem of dou-
bly periodic rectangular-shaped arrays of cracks. To illustrate this
point, the results are also compared with those of Tong et al. [16]
who obtained a closed form solution for a doubly periodic array of

Fig. 1. Doubly periodic rectangular-shaped arrays of cracks.

cracks. The focus is put on the revelation of the fracture character-
istics and the prediction of the effective property of such cracked
materials. To this end, the interaction effect among the doubly peri-
odic rectangular-shaped arrays of cracks on the Plastic zone size
(PZS) and crack tip opening displacement (CTOD) is studied.

2. Formulation of the problem

Antiplane deformation or longitudinal shear occurs in the defor-
mation of a body with constant cross section by forces parallel to
the axis (z axis) and identical for all cross sections. We  consider
here cases where all components of stress and strain depend on
two Cartesian coordinates x and y. Further, attention is restricted
to homogeneous, and isotropic elastoplastic materials. We  consider
longitudinal shear by forces �zy = �0 at infinity for an ideally elas-
tic solid containing a doubly periodic rectangular-shaped array of
cracks is shown in Fg.1. The local coordinates of the composite
are also displayed in Fig. 1. The z-axis is perpendicular to the x-y
plane which is the isotropic plane of the materials. The rectangu-
lar coordinate systems are established with the origin located at
the center of the crack. The traction-free cracks occupy the pos-
itions md1-c ≤ x ≤ md1 + c, y ≤ nh1,(m,n = 0, ± 1, ± 2,. . .), while the
plasticity bands are located on the continuation of the crack md1-
a ≤ x ≤ md1-c and md1 + c ≤ x ≤ md1 + a, y ≤ nh1. As presented in
Fig. 1; each crack in the rectangular array is of length 2c, and is
separated from other cracks by a distance h1 vertically and a dis-
tance d1 horizontally. h1 and d1 are the vertical and horizontal
periodic parameters, respectively. Studies have been made on the
plastic strain in a body containing longitudinal shearing cracks,
which showed that the plastic strain is not localized in thin lay-
ers in the case of an ideally elastoplastic material or a hardening
one. Nevertheless, the model for a crack with plasticity bands is
widely used in the failure mechanics of antiplane deformation. The
tangential stresses �zy = �Y are given on the plasticity bands, while
behind them the material is elastic.

The doubly periodic rectangular-shaped arrays of cracks prob-
lem is periodic with respect to the x-axis, as well as with respect to
the y-axis. Therefore, our attention is confined to the doubly peri-
odic unit cell defined by −d1/2 ≤ x ≤ d1/2, −h1/2 ≤ y ≤ h1/2 as shown
in Fig. 2. Hereafter, the subscripts/superscripts 1 and 2 denote the
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