Accepted Manuscript

Synthesis and characterization of Er³⁺-Yb³⁺ doped ZnO upconversion nanoparticles for solar cell application

Vinod Kumar, Anurag Pandey, Sanjay Kumar Swami, O.M. Ntwaeaborwa, H.C. Swart, Viresh Dutta

PII: S0925-8388(18)32512-X

DOI: 10.1016/j.jallcom.2018.07.012

Reference: JALCOM 46727

To appear in: Journal of Alloys and Compounds

Received Date: 10 March 2018
Revised Date: 21 June 2018
Accepted Date: 1 July 2018

Please cite this article as: V. Kumar, A. Pandey, S.K. Swami, O.M. Ntwaeaborwa, H.C. Swart, V. Dutta, Synthesis and characterization of Er³⁺-Yb³⁺ doped ZnO upconversion nanoparticles for solar cell application, *Journal of Alloys and Compounds* (2018), doi: 10.1016/j.jallcom.2018.07.012.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Synthesis and characterization of ${\rm Er}^{3+}$ -Yb $^{3+}$ doped ZnO upconversion nanoparticles for solar cell application

Vinod Kumar^{1*}, Anurag Pandey², Sanjay Kumar Swami^{1,3}, O.M. Ntwaeaborwa⁴, H.C. Swart² and Viresh Dutta¹

¹Center for Energy Studies, Indian Institute of Technology Delhi, New Delhi-110016, India

²Department of Physics, University of the Free State, Bloemfontein, ZA9300, South Africa

³Department of Materials Science and Engineering, Indian Institute of Technology Kanpur,

Kanpur 208016, India

⁴School of Physics, University of the Witwatersrand, Private Bag 3, Wits, 2050, South Africa

Abstract

Erbium (Er³⁺) and ytterbium (Yb³⁺) co-doped ZnO upconversion (UC) nanoparticle based phosphors is synthesized by solution-combustion method. These UC phosphors are shown a strong UC emissions at red, green and blue wavelengths with the excitation of 980 nm diode laser source. To understand the influence of ZnO:Er³⁺-Yb³⁺ UC based nanoparticles on the performance of dye sensitized solar cells (DSSCs), the UC nanoparticles are incorporated into scattering layer of titanium dioxide films in the form of composite photoanode. The power conversion efficiency (PCE) of the DSSCs is increased from 8.34 to 8.72% after incorporation of ZnO:Er³⁺-Yb³⁺ upconverting nanoparticles. This enhancement in the PCE is due to increase in the short circuit current density (J_{SC}) of 18.66 mA cm⁻². The enhancement in the J_{SC} is due to the infrared light harvesting from infrared into the visible region, while the PCE of reference DSSC (without up conversion layer) is obtained 8.34% with the J_{SC} of 17.89 mA cm⁻².

Keywords: Up conversion nanoparticles; Light harvesting; ZnO nanoparticles; Dye sensitised solar cells

*Corresponding author(s)

Email: vinod.phy@gmail.com, vinodk@iitd.ac.in (Vinod Kumar)

Download English Version:

https://daneshyari.com/en/article/7990402

Download Persian Version:

https://daneshyari.com/article/7990402

<u>Daneshyari.com</u>