Accepted Manuscript

High temperature oxidation resistance of La₂O₃-modified ZrB₂-SiC coating for SiC-coated carbon/carbon composites

Miaomiao Chen, Hejun Li, Xiyuan Yao, Gang Kou, Yujun Jia, Cheng Zhang

PII: S0925-8388(18)32351-X

DOI: 10.1016/j.jallcom.2018.06.230

Reference: JALCOM 46566

To appear in: Journal of Alloys and Compounds

Received Date: 30 March 2018
Revised Date: 7 June 2018
Accepted Date: 19 June 2018

Please cite this article as: M. Chen, H. Li, X. Yao, G. Kou, Y. Jia, C. Zhang, High temperature oxidation resistance of La₂O₃-modified ZrB₂-SiC coating for SiC-coated carbon/carbon composites, *Journal of Alloys and Compounds* (2018), doi: 10.1016/j.jallcom.2018.06.230.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

High temperature oxidation resistance of La₂O₃-modified ZrB₂-SiC coating for

SiC-coated carbon/carbon composites

Miaomiao Chen, Hejun Li*, Xiyuan Yao**, Gang Kou, Yujun Jia, Cheng Zhang

State Kay Laboratory of Solidification Processing, Northwestern Polytechnical University,

Xi'an, 710072, PR China

*Corresponding author:

Tel.: +86 29 8849 2722; fax: +86 29 88492642. Email address: lihejun@nwpu.edu.cn (H.J. Li)

**Corresponding author:

Tel.: +86 29 8849 4197; fax: +86 29 88492643. Email address: yaoxiyuan@nwpu.edu.cn (X.Y. Yao)

Abstract

To improve the long-term anti-oxidation performance of carbon/carbon (C/C)

composites at high temperature, La₂O₃-modified ZrB₂-SiC (ZSL) coating was

prepared on SiC-coated C/C composites by pack cementation. The results indicated

that significant improvement was achieved on the oxidation resistance of ZSL coated

specimens compared with ZrB₂-SiC (ZS) coating for SiC-coated C/C composites at

1500 °C and 1600 °C. The mass loss of the ZSL coated specimen was merely 0.6%

after a static oxidation test at 1500 °C for 550h, while that of the ZS coated specimen

was 1.89% at the same condition. And the ZSL coating can also protect C/C

composites from oxidation for 107 h at 1600 °C with the mass loss of 0.92%.

Moreover, the mass gain of ZSL coated specimen was 0.35% when it subjected to the

thermal shock between 1500 °C and room temperature for 50 times. The excellent

protection ability against oxidation and thermal shock could be attributed to the

synergetic effects of generated La-Si-O compound glassy layer and thermally stable

1

Download English Version:

https://daneshyari.com/en/article/7990460

Download Persian Version:

https://daneshyari.com/article/7990460

<u>Daneshyari.com</u>