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a  b  s  t  r  a  c  t

The  paper  deals  with  a new  formulation  for solving  the rolling  contact  problem  without  friction  of  a  rigid
body  on  a viscoelastic  half-space  in  three  dimensions.  Assuming  that  the  material  behavior  is independent
of  time  for  a sufficiently  short  time  duration,  the  viscoelastic  contact  problem  is  transformed  into  elastic
like  problems.  Then  the  contact  problem  is  solved  using  a direct  numerical  method  at  each  time  step.
The  convergence  of  the  method  in time  and  space  is  good  for a  spherical  indenter.  The  dissymmetry  of
the  contact  patch  due  to hysteresis  was  found  in  three  dimensions  for the spherical  indenter  and  two
cylinders  of  different  width.  Finally  the  method  was tested  for a sinusoidal  varying  speed  and  shows  a
good  efficiency.

© 2015  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Rolling systems such as car tyres and conveyer systems widely
use elastomers. Therefore the time dependent behavior of elas-
tomers should be taken into account when computing rolling
contact for such systems. The viscoelastic rolling contact is also a
fundamental problem which was first investigated by the exper-
imental work of Tabor [17] and the studies of Hunter [7] and
Morland [13] on the rolling contact of a rigid cylinder on a vis-
coelastic half-space. However most of these studies are restricted
to cylinder cases for two dimensional problems. This paper presents
a new algorithm for computing the 3-D time dependent rolling con-
tact between a rigid body and a viscoelastic half-space. The friction
is not taken into account in this work.

Since the middle of the 1980s, Finite Element Methods (FEM)
have been used to solve viscoelastic rolling contact problems.
Padovan and Paramadilok [16] developed a travelling finite ele-
ment strategy based on moving total Lagrangian coordinates to
handle transient and steady viscoelastic rolling contact. Oden and
Lin [15] studied the contact of hyperelastic and viscoelastic rolling
cylinders on a rough foundation. The Arbitrary Lagrangian Eulerian
(ALE) formulation and a finite element approach were applied to
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rolling contact problems by Nackenhorst [14] and later applied to
rolling noise simulations [1].

On the other hand, Boundary Element Methods (BEM) were used
by Kalker to solve the elastic rolling contact problems [9] and later
the problem of rolling viscoelastic multilayered cylinders [10]. The
contact stresses between viscoelastic cylinders were also computed
with BEM by Wang [18] and González and Abascal [6].

Though many formulations and strategies have been developed
to solve viscoelastic rolling problems, most of them are restricted
to 2-D and/or stationary rolling. In this paper, a new formulation
is proposed for the 3-D time dependent rolling contact between
a rigid body and a viscoelastic half-space. The friction will be
neglected in the present work and only the normal pressure is
studied. Based on the assumption that the material behavior is
independent of time for a sufficiently short time duration, the vis-
coelastic contact problem is transformed into elastic like problems.
As a result, numerical methods developed for solving elastic contact
problems can be used.

In Section 2, the formulation of viscoelastic contact is described
without the rolling conditions for facilitating the comprehension.
Then the rolling conditions are introduced in a Lagrangian coor-
dinates system. Section 3 presents the numerical algorithm that
uses the principle of direct matrix inversion methods [8]. Numer-
ical results are given in Section 4 for a rolling sphere and rolling
cylinders of different lengths. The method and the examples are
presented in terms of a displacement-control problem. Transient
rolling and sinusoidal speed rolling are considered to show the
efficiency of the formulation.
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2. Formulation of the viscoelastic rolling contact problem

The problem of the contact between a rigid solid and a viscoelas-
tic half-space is considered in frictionless conditions. The present
normal displacement w at any point (x, y) within the contact area
depends on the pressure distribution history p(�, �, �):

w(x, y, t) =
∫ t

0

J(t − �)
d

d�

[∫ ∫
Sm

T(x, y; �, �)p(�, �, �)ds

]
d� (1)

where Sm is the maximal contact area, J is the creep function and T(x,
y ; �, �) is the influence function which designates the displacement
induced at point (x, y) by a unit point force at (�, �).

The influence function is then given by the Boussinesq’s funda-
mental solution:

T(x, y; �, �) = (1 − �)

�
√

(x − �)2 + (y − �)2
(2)

We suppose that the pressure distribution up to t − �t  is known,
and propose to compute the pressure distribution at instant t. For
the sake of simplicity, we use the following notation for any two
instants t1 and t2:

It2
t1

=
∫ t2

t1

J(t − �)
d

d�

[∫ ∫
Sm

T(x, y; �, �)p(�, �, �)ds

]
d� (3)

Then the following equation holds:

It
0 = It−�t

0 + It
t−�t (4)

In the latter equation, the first term It−�t
0 can be computed from the

pressure distribution history before t − �t.  The second term It
t−�t

will be studied. When � varies from t − �t  to t, t − � varies from �t
to 0. We  assume that if the time duration �t  is sufficiently short,
the creep function is constant:

J(t − �) ≈ J(0) for t − �t  < � < t (5)

Then one can derive:

It
t−�t ≈ J(0)

∫
S(t)

T(x, y; �, �)p(�, �, t)ds

−J(0)

∫
Sm

T(x, y; �, �)p(�, �, t − �t)ds (6)

where S(t) denotes the present contact area.
By introducing the preceding displacement u(x, y, t) which

represents the contribution to w(x, y, t) due to the pressure dis-
tribution history between 0 and t − �t:

u(x, y, t) = It−�t
0 − J(0)

∫
Sm

T(x, y; �, �)p(�, �, t − �t)ds (7)

and taking into account the above equations, Eq. (1) becomes:

w(x, y, t) ≈ u(x, y, t) + J(0)

∫
S(t)

T(x, y; �, �)p(�, �, t)ds (8)

Then the present pressure distribution can be determined by solv-
ing the unilateral contact problem given by the complementary
relations between the gap and the normal pressure:{

∀(x, y) ∈ S(t), ı(t) − z(x, y) − w(x, y, t) = 0 and p(x, y, t) > 0

∀(x, y) ∈ S(t), ı(t) − z(x, y) − w(x, y, t) > 0 and p(x, y, t) = 0
(9)

where ı(t) is the normal penetration of the indenter in the half-
space (i.e. the normal displacement at the tip of the indenter), z(x,
y) describes the geometry of the surface of the indenter, w(x, y, t)
is the present normal displacement as defined in Eq. (1) and S(t)
is the surface of the half-space where there is no contact. Then the

Fig. 1. Frames of coordinates for the rolling problem.

contact condition on the gap in Eq. (9) combined with Eq. (8) leads
to:

∀(x, y) ∈ S(t), J(0)

∫
S(t)

T(x, y; �, �)p(�, �, t)ds ≈ ı(t)

− z(x, y) − u(x, y, t) (10)

Since u(x, y, t) is assumed to be known, this problem can be seen as
an elastic like contact problem at instant t.

In rolling conditions, one can follow a point in the contact plane
by introducing the coordinates below:

X(x, y, t) = x +
∫ t

0

Vx(�)d�, Y(x, y, t) = y +
∫ t

0

Vy(�)d� (11)

where Vx and Vy designate the speed of the rolling solid in
the contact plan. The frames of coordinates are illustrated in
Fig. 1.

Then in rolling conditions one should replace in all equations (x,
y) with (X, Y) and z(x, y) with Z(X, Y, t) which describes the surface
profile of the rolling solid potentially in contact with the half-space
at the present instant. For instance Eq. (1) becomes:

w(X, Y, t) =
∫ t

0

J(t − �)
d

d�

[∫ ∫
Sm

T(X, Y; �, �)p(�, �, �)ds

]
d�

(12)

and the contact problem becomes:

∀(X, Y) ∈ S(t),

⎧⎪⎪⎨
⎪⎪⎩

J(0)

∫
S(t)

T(X, Y; �, �)p(�, �, t)ds ≈ ı(t)

−Z(X, Y, t) − u(X, Y, t)

p(X, Y, t) > 0

(13)

Like Eq. (10), Eq. (13) is an elastic like problem which can be solved
by using classical methods such as the Matrix Inversion Method
[8,9].

3. Numerical procedure

The surface involving the potential contact area of size Lx × Ly

was meshed using n = nxny rectangular elements of dimensions
dx = Lx/nx and dy = Ly/ny centered at (xi, yi) and with uniform pres-
sure on each element.
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