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a  b  s  t  r  a  c  t

In  this  paper,  we  present  a methodology  to  pursue  the  uncertainty  quantification  of the  stochastic  process
that  represents  the  crack  growth  problem.  The  main  idea  of  this  methodology  is  to discretize  the  crack
growth  process  in  a sequence  of random  variables  and  then,  approximate  each  of  them  using  a  stochastic
polynomial  approach.  This  methodology  is  non-intrusive,  i.e.  it is  based  on the representation  of  random
variables  using  stochastic  polynomials,  whose  coefficients  are  evaluated  using  a  least  squares  method  and
only a  few  realizations  of the  stochastic  process.  The  Paris–Erdogan  law  was  used  as  crack  growth  model
in  order  to focus  the  reader’s  attention  on  the  uncertainty  quantification  methodology.  We  modeled  the
parameters  of the  Paris–Erdogan  law  as random  variables,  i.e. the  initial  crack  length  and  the coefficients
of  the Paris–Erdogan  model  are  treated  as random  variables.  Two  numerical  examples  are  presented  in
order  to shown  the effectiveness  and  accuracy  of the  proposed  methodology.  From  the  results  of these
examples,  it is  shown  that  the  proposed  methodology  is  able  to successfully  approximate  the  stochastic
process  that  represents  the  crack  growth  for  the  Paris–Erdogan  model,  with  a much  lower  computational
cost  than  the MCS.  The  main  limitation  of  the  proposed  approach  is  that,  in  the  form  it  was  presented,  it
is not  able  to  handle  random  processes  as  input  parameters.

© 2015  Elsevier  Ltd. All  rights  reserved.

1. Introduction

The analysis of the performance of structural components is
more realistic when the existence of cracks is considered. The
occurrence of cracks, when these are smaller than given thresh-
olds, does not lead to the substitution of the structural component
neither to its removal from operation. The concept of damage toler-
ant design, largely employed in the aircraft industry, may  be cited
here. Its object is to ensure that the structure will continue to sus-
tain a high proportion of its design load even after damage has
occurred [1]. In order to apply it, one must have an adequate sys-
tem of inspection prescribed so that the damage may  be detected
and repaired. Consequently, the modeling of the damage (or crack
growth) assumes an important role in the inspection and mainte-
nance policies in structural engineering.
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There is a consensus that the most appropriate model is one
which takes into account the uncertainties inherent to the process
of crack propagation. Among many works that consider and pro-
pose methods to quantify uncertainty, we  may cite the works of
Hoeppner and Krupp [2], Tanaka et al. (1981), Kozin and Bogdanoff
[3], Lin and Yang [4], Castillo et al. [5], Fabro et al. [6] and Gomes
and Beck [7]. The works of Ghonem and Dore [8] and Xiao et al.
[9] classify the uncertainty quantification methods for the process
of crack growth in two  classes: statistic and stochastic. In the class
of statistical methods, the idea is the randomization of some model
of crack growth, which consists in modeling the parameters of the
model as random variables. In stochastic methods, the parameters
of the crack growth model vary, for instance, with time, i.e. the
input parameters of the model are stochastic processes themselves.
Nevertheless, all the proposed methods, in both approaches, must
employ in their development a model or law for the crack growth.
Such models, from the simplest to the most complex, have to make
assumptions, which in most cases come from experimental obser-
vation, e.g. the Paris–Erdogan law [10]. Regardless of theoretical
rigor of a given model, its success is determined by its use and per-
formance in application to engineering problems, or even in its use
as a foundation for new models.
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At the end of the eighties, Ghanem and Spanos [11] presented
an innovative idea for the representation of stochastic processes
in engineering problems, using chaos polynomials. This work pre-
sented to the engineering and applied mathematics communities a
new approach for the uncertainty quantification in stochastic sys-
tems. It gave a new alternative for the representation of stochastic
systems, besides the well-known methods based on perturbation
and Monte Carlo simulation. This approach spread out in the form
of new theoretical developments and applications in several fields.
The existing polynomial chaos approaches may  be classified in
intrusive or non-intrusive, according to the fact that the original
system is or not manipulated in order to introduce the expansion.
In the non-intrusive approach, the expansion is not introduced in
the model but used only on observed values. For example, the
response of the system for different values of the input parame-
ters is collected and analyzed a posterior in order to generate a
representation.

In this context, this paper presents an uncertainty quantifica-
tion methodology for the approximation of the stochastic process
of crack growth. This methodology discretize the crack growth pro-
cess in a sequence of random variables and employ the stochastic
polynomial approach presented by Lopez et al. [12] to approxi-
mate each one of them. The main idea of the proposed approach
is that from a small set of realizations of the stochastic process
of the crack growth, the deterministic coefficients of the stochas-
tic polynomials are computed using a linear least squares method,
which is a non-intrusive approach. The proposed uncertainty quan-
tification methodology is applied to the crack growth model of
Paris–Erdogan. The uncertainty of the input parameters of this law
is taken into account by a probabilistic parametric approach. That
is, the proposed methodology is a statistical method, dealing with
crack growth processes whose input parameters are random vari-
ables.

The main contributions of the paper, in the authors’ point of
view, are that (i) the proposed methodology is easy to implement,
black box and require a low computational cost for the solution
of the uncertainty quantification problem, (ii) it does not require
any transformation of random variables when dealing with dif-
ferent probabilistic distributions in the same problem. It must be
remarked here that the simple model given by the Paris–Erdogan
law was employed in order to focus the reader’s attention on the
uncertainty quantification methodology and that it may  be easily
extended to more complex cases.

This paper is organized as follows: the proposed methodology
is presented in Section 2, while Section 3 details its application to
the Paris–Erdogan model. The numerical analysis of two  examples
is pursued in Section 4 and the main conclusions drawn from this
work are summarized in Section 5.

2. The proposed methodology

In this section, we present the proposed methodology to pursue
the approximation of the crack growth problem. The main idea of
the proposed methodology is to discretize the crack growth pro-
cess into a finite number of intervals, and in each one of them we
approximate the size of the crack as a random variable.

In order to approximate each random variable of the discre-
tization of the crack growth process, the proposed methodology
utilizes stochastic polynomials. That is, the crack size for a given
cycle number N is determined by an expansion of a = a(N, �(ω))
as a function of the random vector �(ω) = [�1(ω), . . .,  �q(ω)]T on
a Hilbertian basis H – such as, for instance, polynomial chaos
expansions, [13,14], where “q” is the number of random vari-
ables employed in the expansion. In practice, a finite expansion
with “n” terms is employed in order to obtain a finite-dimensional

approximation Pa – the projection of a = a(N, �(ω)) onto a conve-
nient finite-dimensional space S ⊂ L2(˝,  F, P), i.e., a ≈ Pa, where:

S = span{ i(�(ω))}ni=1

=
{
a ∈ S

∣∣∣∣∣a =
n∑
i=1

ai i(�(ω)); ai ∈ R, 1 ≤ i ≤ n

}
. (1)

For a given basis � (�(ω)) = [ 1(�(ω)), . . .,   n(�(ω))]T of S, we

have that ∀y ∈ S, yi ∈ R  such as y =
n∑
i=1

yi i. Hence, Pa ∈ S admits

the following representation,

Pa(N, �(ω)) =
n∑
i=1

ai(N) i(�(ω)). (2)

In order to construct this approximation, the random variables
� of the basis have to be chosen and the coefficients of the pro-
jection Pa have to be determined. Lopez et al. [12] presented a
methodology that sets � as the input random parameters of the
problem. One of the advantages of this procedure is that it does not
require any probabilistic transformation to handle different distri-
butions since the expansion of Eq. (2) is done directly in terms of
the input random parameters of the problem. Also, these authors
tested several methods to compute Pa, and from this comparison,
the authors showed that the collocation approach provided the
best results regarding computational cost and accuracy. The col-
location approach generates a sample from the stochastic process
that describes a, then the approximation is determined by using
the known values as collocation points, i.e., Pa is determined as the
best fit to these known values. The collocation approach is detailed
in the following paragraphs.

Consider the set of realizations of the crack growth process
{a(Ni; �j)}ncycles, ns

i, j=1 , obtained using a MCS, where �j is a realization
of the random vector comprised by the random parameters of the
crack growth model, and “ns” is the number of samples/realizations
of the MCS. In general, these realizations are obtained by the numer-
ical approximation of the solution of the Initial Value Problem (IVP)
chosen to describe the crack growth model for each realization of
its random parameters. For example, in the next section, the IVP is
given by the Paris–Erdogan model and the random vector is com-
prised by the parameters m and C of this model as well as the initial
crack size.

As already mentioned, the stochastic process is discretized in a
sequence of random variables, each defined by N = Ni. Thus, con-
sider the set Bi = {a(Ni; �1), . . .,  a(Ni; �ns )} of the realization of
each random variable generated by fixing N = Ni. From the set Bi,
we formulate an optimization problem, whose solution are the
coefficients of Eq. (2). To accomplish that, a method of linear least
squares is employed,⎧⎨
⎩

Find a∗
i

∈ R
n, such that,

a∗
i

= arg min
a(Ni;�)∈Bi

{( 1
2 )||˙(a(Ni; �))||22}; (3)

where  ̇ = [εj]ns×1 is the residual vector generated by the cycle
N = Ni, and || · ||2 is the Euclidean norm in R

ns . The jth entry of this
vector is defined by:

εj(Ni; �) = (Pa − a)(Ni; �j)

=
[

n∑
k=1

ak(Ni) k(�j)

]
− a(Ni; �j) = (� (�j))

T
ai − a(Ni; �j). (4)
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