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a  b  s  t  r  a  c  t

In this  note  we  consider  the definition  of  anisotropy  with  regard  to the  response  of  bodies  described  by
implicit  constitutive  relations.  The  class  of  response  relations  under  considerations  in this  work  is  implicit
relations  between  the history  of  the stress,  the  history  of  the  density,  and  the  history  of  the  deformation
gradient.  It is  shown  that  the  work  of  Noll  [4]  defining  the  anisotropy  of bodies  in  terms  of symmetry
groups  for  Simple  Materials  can be  very  easily  extended  to  define  the anisotropy  in terms  of  symmetry
groups  for  materials  whose  response  is  described  by  relations  between  the  histories  of  the  stresses  and
the  deformation  gradient.  While  symmetry  groups  are defined,  the  more  arduous  task  of  developing
representation  theorems  for  bodies  defined  through  implicit  response  relations  is an  important  open
task.

© 2014  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

In this short note, we provide the definition of different classes
of anisotropies for bodies whose response is given through rela-
tions between the histories of the stresses and the deformation
gradient. Such a classification is timely as there has been consid-
erable interest in describing the response of bodies using implicit
response relations in view of their being able to describe response
phenomena that cannot be described within the context of Sim-
ple Materials (Noll [4]). Implicit response relations could involve
histories of appropriate quantities or just current values for those
quantities. For bodies described in general by response relations
that relate histories, the notion of what is meant by symmetry
and the subsequent development of the appropriate representation
have not been put into place. Before one can develop represen-
tations, one needs to first understand precisely what is meant by
anisotropy within the context of such classes of implicit response
relations and it is to this task that this short note is addressed. While
this might be a relatively simple task, it provides the starting point
for the far more arduous task of determining the representations
that are appropriate for the response relations that belong to the
different symmetry groups. Even in the case of Simple Materials
this task of determining the representations required the efforts
of numerous researchers: Rivlin, Green, Spencer, Smith, and many
others. In the present case the problem is much more challenging.
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Anisotropy of a body is usually interpreted as the response at a
point belonging to the body being different, when the body is stim-
ulated along different directions, or put differently the property
of the body being different along different directions. The Oxford
English Dictionary gives the following definition of anisotropy:

“Anisotropic ( ), a. [mod. f. Gr. ¨̨ ���oς
unequal + ��o��	óς belonging to turning, f. ��ó�oς a turning.]

Acting in different ways to the way of polarized light; possessing
the power of right-and left-handed polarization; æolotropic.

1879 Rutley Stud. Rocks ix. 77 Minerals – which exhibit double
refraction or are anisotropic. 1881 Maxwell Electr. & Magn. I. 137
A heterogeneous anisotropic medium.”

The entries in the Oxford English Dictionary also provide a time
line for the usage of a word, and as can be seen from the entry
provided above, the Oxford English Dictionary attributes the first
usage of the word anisotropic in English, as far as it can tell, to the
usage by Rutley and it seems to have been used first to discuss the
fact that light rays coming through a polarizer are “turned”. The
Webster’s dictionary defines anisotropy as “exhibiting properties
with different values when measured in different directions”.

The word “turning” is usually understood as “rotation”. The
group of rotations comprise the proper orthogonal group, while
the set of all rotations and reflections is the full orthogonal group.
While in a laboratory one can test a body by rotating it by dif-
ferent amounts, one cannot achieve the reflection of a body and
then determine its response to stimuli. However, a body whose
structure is an inversion of another body could respond differently
to external stimuli, especially stimuli that are not of mechanical
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origin. Moreover, a body whose internal structure is an inversion
of another ought to be viewed as a different body. A body and the
body that is its inversion are firstly not the same body, secondly
they cannot always be envisaged as responding identically when
subject to external stimuli.

One could ask several different questions concerning the invari-
ance in the response of a body with regard to its placement. And
it is important to be clear concerning which question is being con-
sidered as the answers are quite different. The first question is to
which sub-class of rotations to which a body is subject to is the
body’s response invariant? The second question is the more general
question, namely to which sub-class of orthogonal transformations
is the response invariant? And an even more general question is to
which sub-group of unimodular transformations is the response of
the body invariant? The first group of transformations, namely the
sub-group of rotations can be carried out by an experimentalist and
hence can be tested in the laboratory. The second group of transfor-
mations that includes inversions of a body that cannot be carried
out by an experimentalist and is really a question of mathematical
import. While one could carry out a unimodular transformation
that is not orthogonal like that of simple shear in a laboratory,
invariance to such response is clearly not the intent within which
the original ideas of anisotropy were perceived. Thus, in the devel-
opment of constitutive relations for bodies, one could chose to
use any one of these frameworks as long as the context is made
apparent. Requiring the invariance of the body to a larger group
of transformations leads to a more restrictive class of constitutive
relations and hence might inhibit the choice open to the modeler.
One can find reasons to support requiring invariance with regard
to both the proper orthogonal group as well as the full orthogonal
group, but we shall not get into these issues here. We  shall address
the issue of invariance with respect to sub-groups of rotations in
this paper. This is not the invariance considered by a large group
of researchers in the field of continuum mechanics. Truesdell [18]
and Truesdell and Noll [19] while discussing “material symmetry”
introduce the notion of what they refer to as “peer groups” and take
the point of view that one ought to discuss the difference or other-
wise of the response of materials from a more general standpoint,
namely with regard to the body’s response on being in reference
configurations that may  be related to a more general class of trans-
formations than just a sub-group of rotations as seems to be the
original intent of the definition. They describe the differences in the
response of bodies in two different reference configurations that are
related through unimodular transformations, in other words they
allow for non-orthogonal transformations between the reference
configurations that are unimodular. In fact, Truesdel [18] remarks
“The term “isotropy group”, used by NOLL in introducing these groups,
is misleading here because it derives from the concept of turning, while
the elements of the peer group need not all be rotations; “symmetry”,
while closer to popular speech of physicists, would be equally mislead-
ing because it derives from the concept of distance, which is irrelevant
in material response. The term “peer” is intended to suggest its root
meaning, which is “equal in status before the law”, the “law” being here
the constitutive relation of the material”. It is worth noting that Trues-
dell is also interpreting “turning” to be rotation, and the notion of
isotropy and anisotropy as stemming from rotations. He proposes
invariance with respect to sub-groups of a much larger group. While
such a generalization with regard to the delineation of invariance
with respect to the response might be fine if one is interested in
the general invariance of response, it should not be confused with
the notion of anisotropy, that is, the response being different along
different directions. In this short note, we shall take the more tra-
ditional view of discussing the invariance of the response of a body
with respect to different directions, that is, we shall restrict our-
selves to reference configurations related by rotations. For those
that are wedded to the notion that symmetry is determined by

sub-groups of the unimodular group, the definitions in this work
can be simply extended by substituting the unimodular group for
the proper orthogonal group.

The development of implicit constitutive theories to describe
the response of materials could be attributed to a generalization
of the seminal work of Maxwell [3], though the classical Maxwell
model for a viscoelastic fluid with constant material moduli is not
a true implicit model as the symmetric part of the velocity gradient
can be expressed as a function of the stress and its time derivative.
However, if the model were to be generalized wherein the viscosity
and the relaxation time are to be functions of the symmetric part of
the velocity gradient, that is if the viscosity and the relaxation time
depend on the shear rate, the model would be an implicit model. A
generalization of the classical Navier-Stokes model to one in which
the viscosity is a function of the mean value of the stress and the
shear rate would also be an implicit constitutive relation. Fully
implicit constitutive relations were developed primarily to describe
the response of viscoelastic fluids (see for instance the works of
Burgers [1] and Oldroyd [10]) and the inelastic response of solids.
With regard to models concerning viscoelastic fluids, as the bodies
are isotropic no effort was  expended to looking at other types of
material symmetry for the body. In the case of inelastic response,
a lot of the modeling concerned polycrystalline materials and the
elastic response of such bodies was  also assumed to be isotropic
though anisotropy was  considered with regard to the yield surface.
In the case of single crystal plasticity however, the anisotropy of
the material played an important role in describing the material’s
response and the anisotropy was  captured by introducing directors.

We start by considering a very general class of bodies whose
response is given by a functional(an operator) that relates the his-
tory of the stresses, the density and the deformation gradient. After
obtaining the general invariance requirements, we consider the
material symmetry of bodies that are given by implicit functions.

2. Kinematics

We shall now discuss bodies defined through implicit consti-
tutive relations. Mathematicallly speaking, a body is a set that is
endowed with a topology and a measure. Such bodies have been
defined at various levels of abstraction (see [5–8,18,9]), but all these
definitions share one common structure, namely the topological
spaces are populated by entities that we refer to as “points”, that
is the topology that is used is the traditional “point set topology”.
However, as pointed out recently by Rajagopal [15] there are sev-
eral problems in natural philosophy wherein the notion of a “point”
comes in the way  of describing the problem and in resolving them,
which could possibly be dealt with within the context of a topology
without points. We  shall not get into a discussion of these issues
here.

Here, we  shall merely concern ourselves with the standard def-
inition of a body that is due to Noll and his co-workers, namely
one that considers the abstract body to be a set B endowed with
a measure (mass) and the usual topology of open balls in a three
dimensional Euclidean space.

By a placer 	, we  mean a one to one mapping

	 : B → E, (1)

where E denotes an Euclidean space of dimension three. 	(B) is
referred to as a configuration of the body in the three dimen-
sional Euclidean space. By the motion of a body, one refers to a
one parameter family of placers 	t, t ∈ R,  R being the set of real
numbers and the parameter being time. The members P ∈ B are
called particles of the abstract body. For a P ∈ B let X := 	R(P),
where 	R is one of the one parameter family of placers that we
shall identify as a reference placement of the body, and 	R(B) being
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