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a  b  s  t  r  a  c  t

The  buckling  behavior  of monolayer  graphene  (pristine  and vacancy-defected)  and  bilayer  graphene
(pristine)  loaded  in  the  armchair  direction  was  simulated  for different  boundary  conditions  using  a  truss
FE model,  representing  the  exact  atomic  lattice  of graphene,  and  a FE  model  of  an  equivalent  2D  plate.
The  critical  buckling  stress  of  pristine  monolayer  graphene  was  derived  as  a function  of aspect  ratio.
The  results  from  the  two  FE models  coincide  and  are  in very  good  agreement  with  established  analytical
solutions.  With  increasing  the  aspect  ratio,  the critical  buckling  stress  of monolayer  graphene  decreases
until the value  of 2 from  which  the  effect  starts  to diminish.  Using  the  truss  FE  model,  the  effect  of
randomly  dispersed  vacancies  on the  critical  buckling  stress  and  buckling  mode  of  monolayer  graphene
was  studied.  It  was  found  that the  critical  buckling  stress  decreases  dramatically  with  increasing  the
defect  density:  for  a defect  density  of 10%,  the  critical  buckling  stress  decreases  by  almost  50%.  Moreover,
the  presence  of defects  was  found  to affect  the  highest  buckling  modes  (above  3)  even  at  low  densities.
Bilayer  graphene  has  a totally  different  critical  buckling  stress  than  monolayer  graphene  due to  the  effect
of van  der  Waals  forces  which  depends  on  the  applied  boundary  conditions.

© 2015  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Graphene is an atomic-scale honeycomb lattice composed of
carbon atoms. Although it is considered to be the parent material
of carbon nanotube, which is probably the most famous material
of the 21st century, only recently it has been obtained in a stable
crystalline form by Geim and Novolesov [1]. Graphene is not only
the thinnest material ever but also the strongest. In [2] Lee et al.
have measured, by nanoidentation in an atomic force microscope,
the Young’s modulus and intrinsic strength of defect-free graphene
monolayer to be 1.0 TPa and 130 GPa, respectively. In the past, sim-
ilar values have been also reported for carbon nanotubes but only
by simulations. Contrary to simulations, experiments give a Young’s
modulus of 0.45 TPa and a strength of 40 GPa for carbon nanotubes.
The large deviation between simulations and experiments has been
found to be attributed to the presence of defects in the nanotube
structure [3–6]. Equally significant is the effect of defects on the
mechanical properties of graphene. Tserpes [7] has found by atom-
istic FE simulations that the presence of 4.4% of vacancies (missing
atoms) results in a 50% reduction in Young’s modulus and tensile
strength of graphene.

Among the several potential applications of graphene there are
some, such as nano-electromechanical systems, flexible electronics
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and composite materials that are related with its compressive
(buckling) response. Thus, it is important to fully understand the
buckling response first of the isolated graphene and then of the
embedded graphene. There are a few reported works on the buck-
ling behavior of isolated graphene. Sakhaee-Pour [8] and Rouhi and
Ansari [9] used the atomistic FE modeling approach proposed in
[10] to derive the elastic buckling force for different boundary con-
ditions and aspect ratios of pristine monolayer graphene. A similar
study using a similar method was  performed by Chandra et al. [11].
Pradhan [12] derived the same results using nonlocal elasticity and
higher order shear deformation theory. Farajpour et al. [13] studied
the buckling behavior of nanoscale circular plates under uniform
radial compression using a nonlocal continuum plate model. Ansari
and co-workers predicted the biaxial buckling and vibration behav-
ior of graphene via a nonlocal atomistic-based plate theory [14]
and the biaxial buckling behavior of single-layered graphene sheets
based on nonlocal plate models and molecular dynamics simula-
tions [15].

Summarizing this short literature overview it becomes evident
that there is still a need for studying the effect of defects on the
buckling behavior of graphene and simulating the buckling behav-
ior of multi-layered graphene which is the usual form of graphene.
Such a modeling study could be performed either by pure atom-
istic approaches such as molecular mechanics and dynamics [15]
or atomistic-based numerical approaches such as the combination
of force-fields with the finite element method [8–10], the nondis-
sipative model based on Hertzian interaction of [16], the universal
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Fig. 1. Schematic of a monolayer graphene, basic dimensions and loading direction.

formulae of [17] and the multi-scale mass-spring models of [17,18].
Both approaches present advantages and disadvantages. The major
advantages of atomistic approaches is the accurate representation
of atomic structure (geometry of bonds) and the ability to con-
sider chemical phenomena such as bond breaking and formation
while their major disadvantages is the large required computa-
tional effort and the inability to model systems that lie at scales
higher than the nano-scale. On the other hand, the major draw-
back of atomistic-based numerical approaches is that in some
cases they are rather approximate as they fail to model the exact
atomic structure and capture chemical phenomena that influence
the behavior of the nanomaterial while their major advantage is
that they are computationally efficient in the sense they require
a very small computational effort and can be used to model com-
plicated material systems lying at different scales and subjected
to complex loading conditions. Under this frame, in the present
paper, the buckling behavior of monolayer graphene (pristine and
vacancy-defected) and bi-layer graphene (pristine) was simulated
for different boundary conditions using a truss FE model, repre-
senting the exact atomic lattice of graphene, and a FE model of an
equivalent 2D plate.

2. Description of problem

Consider a monolayer graphene of height a and width b and
a bilayer graphene consisting of two monolayer graphenes. It is
desired to compute the critical buckling stress and buckling modes
of both pristine materials loaded in the armchair direction for
different boundary conditions. In Fig. 1, a schematic of mono-
layer graphene along with the dimensions and loading direction

are illustrated. The boundary conditions considered are listed in
Table 1. For graphene monolayer, the effects of aspect ratio (b/a)
and randomly dispersed vacancies (1 missing atom) on the criti-
cal buckling stress and buckling mode will be also examined. The
graphene aspect ratio varied between the values of 0.3 and 2.0.

3. Finite element analysis

To deal with the problem described previously, two different FE
models have been developed, namely a truss FE model representing
the exact atomic lattice of graphene and a 2D FE model of an equiv-
alent plate. Both models have been developed using the ANSYS FE
commercial code [20].

3.1. Truss FE model

Carbon atoms in graphene are bonded together with cova-
lent bonds forming a hexagonal 2D lattice. These bonds have a
characteristic bond length and bond angle. The displacement of
individual atoms under an external force is constrained by the
bonds. Therefore, the total deformation of graphene is the result
of the interactions between the bonds. By considering the bonds
as connecting load-carrying elements, and atoms as joints of the
connecting elements, graphene may  be simulated as a plane-frame
structure. By treating graphene as a plane-frame structure, its
mechanical behavior can be analyzed using classical structural
mechanics methods such as the FE method. For the modeling of
the C C bonds, the 3-D elastic BEAM188 element [20] was used.
This is a 3D beam element with six DOFs per node. Fig. 2 depicts
how the hexagon, which is the constitutional element of graphene
nano-structure, is modeled as structural element of a planar-frame.
In the same way  the entire graphene’s lattice is modeled. The mod-
eling simulation leads to the correspondence of the bond length
to the element length as well as the wall thickness with the ele-
ment thickness. By assuming a circular solid cross-sectional area
for the element, as in Fig. 2, wall thickness corresponds to element’s
diameter.

The elastic geometrical properties of the beam elements have
been derived using an energy linkage between molecular mechan-
ics and continuum mechanics developed in [10]. According to the
linkage the diameter, Young’s modulus and shear modulus of the
beam elements representing the C C bonds are derived from:
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Table 1
Description of the different sets of boundary conditions considered.

Set x = a/2 x = −a/2 y = b/2 x = −b/2

A – (free) – (free) w = 0, ∂2w
∂y2 = 0 (pinned)

Fy = −1

w = 0, ∂2w
∂y2 = 0 (pinned)

Fy = 1
B  – (free) – (free) w = 0, ∂w

∂y
= 0 (clamped)

Fy = −1
w = 0, ∂w

∂y
= 0 (clamped)

Fy = 1
C  w = 0, ∂2w

∂x2 = 0 (pinned) w = 0, ∂2w
∂x2 = 0 (pinned) w = 0, ∂2w

∂y2 = 0 (pinned)

Fy = −1

w = 0, ∂2w
∂y2 = 0 (pinned)

Fy = 1
D  w = 0, ∂w

∂x
= 0 (pinned) w = 0, ∂w

∂x
= 0 (pinned) w = 0, ∂2w

∂y2 = 0 (clamped)

Fy = −1

w = 0, ∂2w
∂y2 = 0 (clamped)

Fy = 1
E  w = 0, ∂2w

∂x2 = 0 (pinned)
Fx = −1

w = 0, ∂2w
∂x2 = 0 (pinned)

Fx = 1
w = 0, ∂2w

∂y2 = 0 (pinned)

Fy = −1

w = 0, ∂2w
∂y2 = 0 (pinned)

Fy = 1
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