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a  b  s  t  r  a  c  t

By  investigating  the  effective  response  of linear  viscoelastic  composites,  we  demonstrate  that  stiff  sys-
tems can  exhibit  stable  extreme  increases  in  overall damping  if one  of  the composite  phases  loses
positive-definiteness  of  its  elasticities.  While  non-positive-definite  elastic  moduli  (often  referred  to as
negative  stiffness)  are  thermodynamically  unstable  in unconstrained  homogeneous  solids,  the  geometric
constraints  among  constituents  in  a composite  can  provide  sufficient  stabilization.  Allowing  for  negative-
stiffness  phases  in  principle  expands  the  range  of  attainable  composite  properties  and  promises  extremely
high  composite  stiffness  and  damping  (significantly  beyond  those  of  the composite  base  materials)  if  the
composite  is appropriately  tuned.  This,  however,  raises  questions  of  stability.  In particular,  the  resulting
high  damping  in  stiff  composites  so  far has  only  been  shown  to  be stable  in simple  structural  and  ele-
mentary  spring-dashpot  systems,  and  therefore  has  remained  a key  open  question  for  general  composite
materials.  Studying  successively  the  examples  of a spring-dashpot  model,  a two-phase  solid,  and  a  gen-
eral  particle–matrix  composite,  we demonstrate  that a  non-positive-definite  phase  may  indeed  result  in
stable extreme  damping,  which  is  in  line  with  recent  experimental  findings.

© 2013  Elsevier  Ltd.  All rights  reserved.

1. Introduction

Composite materials are a popular means to achieving superior
viscoelastic performance, where viscoelasticity characterizes the
time-dependent stress–strain response of solids, comprising their
stiffness and damping capacity. Due to competing microstructural
mechanisms, naturally occurring materials generally exhibit either
high stiffness or high damping but not both, see e.g. (Ashby, 1989;
Chen and Lakes, 1993). Therefore, one commonly combines high-
stiffness phases and lossy high-damping phases in a composite to
provide stiff materials with the ability to effectively damp vibra-
tions, for recent examples see e.g. (Kim et al., 2002; Sain et al., 2013;
Meaud et al., 2013). This unique but rare combination of high stiff-
ness and high damping is of great interest across technological and
scientific disciplines with applications in air- and spacecraft design,
scientific instrumentation, seismic protection, or sound and vibra-
tion insulation, or generally everywhere stiff and strong members
must attenuate vibrations.

If nonlinear effects are neglected as e.g. in the presence of only
small stress and strain amplitudes, the solid can be described by
a linear viscoelastic model relating stresses and strains through
time-dependent material constants (Christensen, 1971). In the spe-
cial case of harmonic loading, these moduli and therefore the
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mechanical response become frequency-dependent (Lakes, 1999).
In the low-frequency regime, sufficiently far away from the nat-
ural frequency, we may  neglect inertial effects, so that the linear
viscoelastic response of a solid can be obtained by recourse to the
correspondence principle (Read, 1950; Lee, 1955): if an equilib-
rium solution is known for the corresponding linear elastostatic
problem, the linear viscoelastic harmonic solution is obtained
by replacing the elastic moduli by their complex-valued and
frequency-dependent viscoelastic counterparts. The complex vis-
coelastic moduli in turn allow for the extraction of the dynamic
moduli and the corresponding loss factors that characterize the
material’s damping.

The effective viscoelastic properties of a composite material
result from the individual constituent properties and their geo-
metric arrangement and bonding (Milton, 2001). Exact solutions
are known only for very few specific cases. In general, bounds
on the effective properties have been established for linear elas-
tic (isotropic) composites e.g. by Voigt (1889) and Reuss (1929) or
Hashin and Shtrikman (1963), which can be extended to linear vis-
coelastic solids by use of the correspondence principle (Wang and
Lakes, 2005). For positive-definite constituents, these bounds show
that the overall properties of a composite can never surpass those
of the constituents, thereby greatly limiting the attainable space of
stable viscoelastic moduli in composite materials.

Recently, it was shown that the geometric constraints
among the phases of a composite can stabilize what is
unstable in an unconstrained solid, see e.g. (Drugan, 2007;
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Fig. 1. Schematic of the three model composite systems: (a) system of linear springs, dashpots, and point masses; (b) linear viscoelastic two-phase solid of a coated spherical
inclusion; (c) linear viscoelastic particle–matrix composite with periodic or random microstructure.

Kochmann and Drugan, 2009): individual composite constituents
may  exhibit stable non-positive-definite elastic moduli (so-called
negative stiffness), which would generally result in mechanical
instability in a homogeneous free-standing solid without the
composite constraints (Kirchhoff, 1859). This applies equally to
two-phase solids of e.g. coated cylinders and coated spheres
(Drugan, 2007) as well as to general particle–matrix composites
(Kochmann, 2012; Kochmann and Drugan, 2012).

Negative stiffness (i.e. non-positive-definite elastic moduli) can
be realized experimentally in solids undergoing structural tran-
sitions which render equilibrium states unstable. For example,
piezoceramic perovskites in their high-temperature cubic phase
become unstable as the temperature is reduced below the Curie
point and the tetragonal phase variants produce a stable equilib-
rium. Stabilizing the high-temperature phase below the Curie point
yields an unstable solid with non-positive-definite moduli. This was
demonstrated experimentally by Jaglinski et al. (2007) who  realized
the negative stiffness effect in piezoceramic barium titanate par-
ticles (stabilized in a metal-matrix composite) and measured the
effective viscoelastic properties. Hence, time-dependent negative
stiffness in solids can indeed be realized when viscoelastic solids
undergo small-scale mechanical instability. Characterizing their
viscoelastic properties experimentally, however, is challenging as
this can only be done indirectly e.g. in composite materials contain-
ing such phases (due to the delicate stability of negative-stiffness
phases which may  only exist in a constrained environment).

By allowing for non-positive-definite phases, a review of the
attainable composite performance has resulted in predictions of
extraordinary mechanical properties: Lakes and Drugan (2002)
proposed elastic composites with extremely high effective stiff-
ness; Wang and Lakes (2004) suggested that extremely high
stiffness and damping can be achieved (where by extreme we
imply values that surpass those of the base materials). Various
other physical properties have the potential to exhibit anomalies
as well, including piezo- or pyroelectricity, or thermal expansion
(Wang and Lakes, 2001). Unfortunately, extreme stiffness values
due to such negative-stiffness phases in an unconstrained elas-
tic composite are unstable under static conditions (Wojnar and
Kochmann, 2013a,b) (but may  be stabilized dynamically at high
frequency (Kochmann and Drugan, 2011)). Extreme damping due
to negative-stiffness components, in contrast, was  shown to be
stable in spring-dashpot systems (Wang and Lakes, 2004), which
are commonly employed to represent linear viscoelastic solids.
Furthermore, recent experiments have confirmed considerable
damping increases in structural systems due to pre-stressed buck-
led columns realizing the negative-stiffness effect (Kashdan et al.,
2012). Furthermore, using numerical methods and topology opti-
mization, Prasad and Diaz (2009) found specific arrangements of
stable particle–matrix composites whose negative-stiffness inclu-
sions are responsible for viscoelastic frequency-softening. Note that
such analyses must be handled with caution: positive-definiteness
of the resulting effective elasticity tensor of a homogenized com-
posite is generally not sufficient for overall stability, as shown
e.g. by Kochmann and Drugan (2012) and Wojnar and Kochmann

(2013a), and exact stability conditions have only been derived
for few specific composite geometries. Therefore, present under-
standing of whether or not extreme damping in composites due
to non-positive-definite phases can be stable is incomplete for
two reasons (among others): (i) besides highly idealized spring-
dashpot examples there has been no analysis of actual composites,
exploring the full range of stable moduli combinations and examin-
ing the possibility of extreme damping; and (ii) effective property
predictions based on composite bounds and the correspondence
principle neglect inertial effects so that the interesting case of res-
onant damping in composites with non-positive-definite phases
has not been investigated.

Here, we  investigate the effective linear viscoelastic response
of specific two-phase solids and composites in the subresonant
and resonant regime, and we explore the beneficial impact of a
non-positive-definite phase on the overall damping and dynamic
moduli. Most previous analyses of the viscoelastic behavior of solids
having a negative-stiffness phase were based either on simple
spring-dashpot models or on bounds on the effective composite
moduli. Here, for the first time we analyze the effective dynamic
stiffness and damping of two-phase solids using exact continuum-
mechanics solutions. Similar examples of two-phase solids were
investigated before with respect to their effective linear elastic
properties, see e.g. (Kochmann and Drugan, 2009, 2012), while
their viscoelastic moduli and specifically their damping capacity
have been neglected. The paper is structured as follows: Section 2
explains the employed viscoelastic models as well as the derivation
of effective properties and overall stability. The following three sec-
tions then apply these models and methods to the specific examples
shown in Fig. 1. Section 3 studies a spring-dashpot system to illus-
trate the phenomena of interest. Section 4 examines the two-phase
solid of a coated spherical inclusion, and Section 5 investigates
(periodic or random) particle–matrix composites. Finally, Section 6
concludes the analysis.

2. Linear viscoelastic solids

2.1. Constitutive model

Using infinitesimal stress and strain tensors, � and ε,  respec-
tively, the stress response �(t) of a linear viscoelastic solid subject
to strain history ε(t) (with t denoting time) can be written as

�ij(t) =
∫ t

0

Cijkl(t − �)
∂εkl(�)

∂�
d�. (1)

Here and in the following we  employ standard index notation and
the summation convention. C(t) is the time-dependent fourth-
order viscoelastic modulus tensor which is often approximated by
a finite number N of relaxation responses with relaxation times �:

C(t) =
N∑

ˇ=1

Cˇ exp

(
− t

�ˇ

)
. (2)
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