Accepted Manuscript

 ${\rm Sr}^{2+}$ substitution for ${\rm Ca}^{2+}$ and ${\rm Eu}^{2+}, {\rm Dy}^{3+}$ co-doping enhance mechanoluminescence of CaAl_2Si_2O_8 phosphors

Hua Fang, Gaojian Qiu, Jun Li, Xusheng Wang

PII: S0925-8388(18)32030-9

DOI: 10.1016/j.jallcom.2018.05.294

Reference: JALCOM 46270

To appear in: Journal of Alloys and Compounds

Received Date: 20 January 2018

Revised Date: 15 May 2018

Accepted Date: 24 May 2018

Please cite this article as: H. Fang, G. Qiu, J. Li, X. Wang, Sr²⁺ substitution for Ca²⁺ and Eu²⁺,Dy³⁺ co-doping enhance mechanoluminescence of CaAl₂Si₂O₈ phosphors, *Journal of Alloys and Compounds* (2018), doi: 10.1016/j.jallcom.2018.05.294.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Sr²⁺ substitution for Ca²⁺ and Eu²⁺,Dy³⁺ Co-doping enhance mechanoluminescence of

CaAl₂Si₂O₈ Phosphors

Hua Fang, Gaojian Qiu, Jun Li, Xusheng Wang*

Key Laboratory of Advanced Civil Engineering Materials of the Ministry of Education, Functional Materials Research Laboratory, School of Materials Science and Engineering, Tongji University, 4800 Cao'an Road, Shanghai 201804, China.

E-mail:*xs-wang@tongji.edu.cn

Abstract: A series of phosphors (Ca_{1-x}Sr_x)Al₂Si₂O₈:Eu²⁺,Dy³⁺ (x = 0.1, 0.2, 0.3, 0.4, 0.5, 0.8) and Ca_{0.6}Sr_{0.4}Al₂Si₂O₈:yEu²⁺,2yDy³⁺ (y = 0.005, 0.01, 0.015, 0.02) were prepared. It was found Ca_{0.6}Sr_{0.4}Al₂Si₂O₈:Eu²⁺,Dy³⁺ achieved the highest mechanoluminescence intensity, and the optimal Eu²⁺ and Dy³⁺ co-doping contents were 1% and 2%, respectively. The emission peak of Ca_{0.6}Sr_{0.4}Al₂Si₂O₈:0.01Eu²⁺,0.02Dy³⁺ was located at 413 nm on ML spectrum, which was similar to the photoluminescence, indicating both mechanoluminescence and photoluminescence were attributed to the 4f⁶5d¹ \rightarrow 4f⁷ transition of Eu²⁺. Also Ca_{0.6}Sr_{0.4}Al₂Si₂O₈:0.01Eu²⁺,0.02Dy³⁺ exhibited an excellent threshold force (130 N) in the extremely broad tested force range (130 -3,000 N) and kept a nearly perfect linear response, which made it a potential candidate for application of pressure sensors. The introduction of Sr²⁺, Eu²⁺ and Dy³⁺ caused lattice distortion, formation of more defects, and thus generation of more suitable traps to capture the electronic carriers under ultraviolet excitation. Increasing the number of traps and tuning of the trap depth were found to increase the mechanoluminescence response.

Keywords: phosphors; mechanoluminescence; lattice distortion; traps.

Download English Version:

https://daneshyari.com/en/article/7990809

Download Persian Version:

https://daneshyari.com/article/7990809

Daneshyari.com