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a  b  s  t  r  a  c  t

We  study  model  one-dimensional  crawlers,  namely,  model  mechanical  systems  that  can  achieve  self-
propulsion  by  controlled  shape  changes  of their  body  (extension  or contraction  of  portions  of  the  body),
thanks  to frictional  interactions  with  a rigid  substrate.  We  evaluate  the  achievable  net displacement  and
the  related  energetic  cost  for self-propulsion  by discrete  crawlers  (i.e.,  whose  body  is  made  of  a  discrete
number  of contractile  or extensile  segments)  moving  on  substrates  with  either  a Newtonian  (linear)
or  a Bingham-type  (stick-slip)  rheology.  Our  analysis  is  aimed  at  constructing  the  basic  building  blocks
towards  an  integrative,  multi-scale  description  of  crawling  cell  motility.

© 2013  Elsevier  Ltd. All  rights  reserved.

1. Introduction

This paper discusses the mechanics of model one-dimensional crawlers, namely, model systems that are capable of self-propulsion. This
is powered by shape changes of their body (controlled extension or contraction of portions of the body), thanks to frictional interactions
with a rigid substrate. The motivations for this study stem from the quantitative study of biological locomotion at the micron scale (crawling
or swimming motility of cells and unicellular organisms), and the quest for engineered, biomimetic systems capable of reproducing micron-
scale motility in artificial devices. Devices of this type would have countless applications, for example in the fields of bio-engineering and
miniaturized bio-medical devices.

The framework employed to study the problem is that of Geometric Control Theory, used e.g. in Alouges et al. (2008, 2009), and, more
recently, in Alouges et al. (2013a) to study microscopic (low Reynolds number) swimmers. In fact, as discussed in DeSimone et al. (2013),
the mechanics of swimming and crawling can be treated in a unified way, at least as long as the local approximation of Resistive Force
Theory can be used to model hydrodynamic forces.

The study of the locomotion strategies of microscopic, unicellular organisms has received enormous attention in recent years, and a
lot is known about the mechanisms on which self-propulsion is based, up to the minute details of the molecular motors powering them.
By comparison, the development of integrative multi-scale models at the whole cell scale is in its infancy. The goal of our research is the
construction of the basic building blocks of such synthetic models, by focusing initially on model systems in which the kinematics of the
locomotor and its mechanical interactions with the environment are coarse-grained.

In this work, we consider the case in which the crawler body is made of a discrete number of contractile or extensile segments, in a
spirit similar to Alouges et al. (2013b), where propulsion powered by bending waves traveling in a flagellum is analyzed. We  believe that
our approach is quite general, and that it will be possible to extend it in the future to different types of crawler–substrate interactions (e.g.
dry-friction, Bigoni and Noselli, 2011) and to concrete biological examples (such as unicellular swimming protists, Arroyo et al., 2012 and
crawling cells, Cardamone et al., 2011).
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Fig. 1. Kinematics of the one-dimensional crawler.

2. One-dimensional crawlers: kinematics, equation of motion and energetic cost

We  consider a one-dimensional crawler constrained to move along a straight line. The system is analyzed within the non-linear frame-
work of large deformations, i.e., we distinguish between material (Lagrangian) and spatial (Eulerian) velocities. Our developments here
follow closely those in DeSimone and Tatone (2012) and, in turn, Dal Maso et al. (2011) where a general three-dimensional shape-changing
body surrounded by a (Stokes) viscous fluid is considered.

We  denote by X the coordinate along the worm’s body in the reference configuration, in which the left end coincides with the origin
(X1 = 0) and L is the reference length (X2 = L) (see Fig. 1).

We  thus have 0 ≤ X ≤ L and the one-dimensional motion of the worm is described by

x(X, t) = x1(t) + s(X, t), (2.1)

with s(0, t) = 0, s′(X, t) > 0 ∀ X ∈ (0, L), where a prime denotes derivative with respect to X, and x1(t) : = x(X1, t), x2(t) : = x(X2, t). We  also have

l(t) =
∫ L

0

s′(X, t) dX, (2.2)

where l(t) is the current length of the crawler at time t. Here, x1 describes the position of the worm (with respect to the fixed lab frame)
and s, the arc-length parameter in the deformed configuration, describes the shape of the worm (configuration in the body frame, i.e., as
seen by an observer moving with the worm). In this paper, we  will consider shape as freely controllable, by assigning

s′(X, t) = �∗(X, t), (2.3)

where �* is a prescribed function of space and time such that �*(X, t) > 0 ∀ X ∈ (0, L). Note that the Eulerian velocity at position x in the
current configuration of the worm is given by

v(x, t) = ẋ(X, t)|X=s−1(x−x1(t),t) = ẋ1(t) + ṡ(s−1(x − x1(t), t), t). (2.4)

In this study the system is analyzed in the quasi-static approximation, such that inertial forces are neglected and the equations of
motion reduce to the vanishing of the component along the x-axis of the total force acting on the crawler in its current configuration.
Our model worm can only exploit shape changes (extensions and contractions along its axis) and tangential interactions with a substrate
(see Fig. 2). These are described by a force–velocity relationship, giving the density per unit current length f(s, t) at time t and at the point
identified by arc-length s, as a function of the velocity v(s, t) at that point and time. The corresponding density per unit reference length
can be introduced as follows

fr(X, t) = f(s, t)|s=s(X,t)s
′(X, t), (2.5)

and in the following analyses we will only consider the components of v, f, and fr along the axis of motion, oriented from left to right,
denoted simply by v, f, and fr. One interesting case is the Newtonian linear viscous law given by

fN(s, t) = −�Nv(s, t), (2.6)

where �N > 0 is a constant viscosity coefficient. Another possibility, useful to model stick-and-slip behavior, is the Bingham case described
by

fB(s, t) =

⎧⎪⎨
⎪⎩

−�y − �Bv(s, t) if v(s, t) > 0,

� ∈ [−�y, �y] if v(s, t) = 0,

�y − �Bv(s, t) if v(s, t) < 0.

(2.7)

Force–velocity laws of this type arise, for instance, in the study of snail locomotion (see e.g. Chan et al., 2005; Denny, 1980, 1981; DeSimone
et al., 2013).

Denoting by N(X, t) the axial force at point X and time t, the pointwise force balance in the reference configuration reads

N′(X, t) = −fr(X, t) (2.8)

Fig. 2. A sketch of the forces per unit length f(s, t) acting on the one-dimensional crawler.
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