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a  b  s  t  r  a  c  t

Variational  methods  for  studying  cohesive  fracture  and  elastoplasticity  have  generally  relied  on  mini-
mizing  an  energy  functional  that  is the  sum  of a stored  elastic  energy  and  a  defect  energy,  corresponding
to  fracture  or  plasticity.  The  usual  method  for showing  existence  of  minimizers  is  the  Direct  Method,
whose  success  requires  some  properties  of  the  defect  energy  that  are  not  physically  motivated,  or  in  fact
are  contrary  to physically  desired  properties.  Here  we  introduce  a new  variational  principle  based  on
the  idea  of  “necessity”  of  the  defect,  in  the spirit  of Garroni  and  Larsen  (2009),  reflecting  the  notion  that
these  defects  occur  only  if  necessary  in order  for the  elastic  stress  to  be admissible,  i.e.,  under  the  critical
stress  at  which  fracture  or plasticity  begins.  The  advantage  is  that  the Direct  Method  only  comes  into
play  with  a constraint  on  the  defect  set,  which  obviates  some  of  the  technical  issues  usually  involved.
The  most  significant  advantage  is that  existence  of  global  minimizers  generally  requires  an  infinite  stress
or  strain  threshold  for plasticity  or  fracture,  while  our formulation  is appropriate  for  finite  thresholds.  A
further advantage  is that the  method  produces  local  minimizers  or locally  stable  states,  rather  than  less
physical  global  minimizers.  General  existence  results  will require  new  methods,  but  here  we  easily  show
existence  in  one  dimension  for both  static  and quasi-static  solutions,  even  when  global  minima  do  not
exist.

©  2013  Elsevier  Ltd. All  rights  reserved.

1. Introduction

A common feature of elastoplasticity and cohesive fracture is
that deformations are purely elastic until a yield surface is reached,
in the form of the boundary of admissible elastic stresses in the case
of elastoplasticity, or a critical stress at which cohesive fracture
begins. Considering the case of cohesive fracture, the energy of a
deformation or displacement u is

E(u) :=
∫
˝

W(∇u)dx +
∫
�

 ([u])dHN−1,

where [u] is the jump in displacement, i.e., the size of the crack
opening, and � is the crack set in the reference configuration ˝.
Of course, u can only be a local minimizer of E if |DW(∇ u)| ≤  ′(0+)
a.e. in ˝.  Hence, c : =  ′(0+) corresponds to a stress threshold for
the nucleation of fracture. It then is natural to define equilibria to
be local or global minimizers of E, and even consider quasi-static
time evolutions based on global minimality (see, e.g., Mielke and
Theil, 2004; Dal Maso and Zanini, 2007). However, showing exist-
ence for such problems has proven to be very problematic. Indeed,
the only rigorous results that have a stress threshold for fracture
are based on a regularization. One approach, put forward in Bourdin
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et al. (2000), is based on the Ambrosio–Tortorelli approximation of
the Mumford–Shah energy. Another approach, by Schmidt et al.
(2009), is based on “eigenfracture.” Both of these approaches are
approximations of a sharp-interface model of fracture, and have
the feature that the stress threshold for fracture necessarily blows
up as the approximation improves. What is missing is a workable
sharp-interface model with a finite stress threshold for fracture.
Among other things, such a model would allow for the possibil-
ity of proving that numerical methods using a stress threshold for
fracture converge to some appropriate sharp interface problem. We
propose such a model here, introducing a local stability criterion
rather than global minimality. In order to motivate it, we first must
explain the issues with global minimization.

In order to use the Direct Method of the Calculus of Variations
for these so-called “free discontinuity” problems, it is required
that every sequence {un} with bounded energy converge, up to
a subsequence, to a function u (in the appropriate space), with
E(u) ≤ lim infn→∞E(un), which we  will now see necessitates   being
sub-additive and  ′(0) =∞, as well as W being quasiconvex with
superlinear growth at infinity. One immediate problem is that we
can have

∫
˝
 ([u])dHN−1 < lim infn→∞

∫
˝
 ([un])dHN−1 if   is not

sub-additive. A more significant problem comes from the spaces
involved. The natural space on which to define E is SBV introduced
in Ambrosio (1989), made up of functions with only smooth and
discontinuous variation. If c< ∞,  then it does not follow from the
boundedness of E(un) that a limit u is in SBV (see Ambrosio et al.,
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2000). Furthermore, even if u ∈ SBV, the limit of [un] in the sense of
measures can affect ∇u, destroying lower semicontinuity if c< ∞.
The underlying cause for both is that the discontinuity sets � n cor-
responding to un can become diffuse in the limit. We  will return to
this point below.

There is a similar issue in elastoplasticity. In small strain lin-
earized elastoplasticity, the strain (i.e., the symmetrized gradient)
is decomposed as

Eu = e + p,

where e is the elastic strain and p the plastic strain. The stress
� is a function only of the elastic strain, � = Ce, where C  is the
elasticity tensor. The basic idea of this model is that there is an
admissible set K for the stress, and plasticity occurs as the stress
begins to leave this set. That is, if no plastic deformation has yet
occurred, and u changes incrementally so that C(Eu) remains in K,
then no plastic deformation should occur, i.e., p = 0. Note that we
can formulate cohesive fracture in a similar way, defining K : = B(0,
c), the ball centered at zero with radius c, and the constraint
is |�| ∈ K.

There is an additional characteristic of plasticity – the model
either has hardening, softening, or perfect plasticity. Hardening
means that once plastic deformation occurs at a point, the set K
grows at that point; softening means the set shrinks, and perfect
means it stays the same. The hardening regime necessarily is a
model for diffuse plasticity, since (assuming initially K is the same
at every point) once plasticity occurs at a point, it will occur in the
future at some nearby point where the admissible set is smaller.
With softening, once plasticity occurs at a point, it will occur in the
future at that same point (that is, further plastic deformation will
occur), instead of at a nearby point, since K is smaller at the original
point.

This elastoplasticity can be modeled (formally) with an energy
(see Dal Maso et al., 2006, 2007, 2008a,b)

1
2

∫
˝

Ce : edx +
∫
˝

H(p(x))dx,

where H is homogeneous of degree 1 in the case of perfect plasticity,
superlinear in the case of hardening, and (morally) sublinear in the
case of softening (see, e.g., Dal Maso et al., 2008a,b). In the cases
of perfect plasticity and softening (assuming the set K is bounded,
or equivalently, the slope of H at zero in each direction is finite),
this energy needs to be relaxed if one is seeking its minimization,
since this behavior of H at most puts an L1 bound on minimizing
sequences, and so one only has compactness in BV (or BD), as we
discussed above. In fact, it is important to note that in the case
of softening, this is particularly important, since minimizing this
energy naturally leads to concentrations in p on Lebesgue measure
zero sets. p in that case is a (vector valued) measure, and for perfect
plasticity the last term in the energy is∫
˝

H
(
p

|p|
)
d|p|,

also written in shorthand as
∫
˝H(p) (only for the 1-homogeneous

case). Of course, for softening, this does not work, as (p/|p|) is a
unit vector, and so for every H this energy is 1-homogeneous, and
so cannot model softening. This is handled in (Dal Maso et al.,
2008a,b) by adding a concave softening potential. Our view here
is that, as we briefly described above, when there is softening it is
natural for the plastic deformation to concentrate on sets as small
as possible, which means plastic deformations correspond to jump
discontinuities. We  can then model plastic deformation using only
a concave potential  ,  just as in cohesive fracture, where  ′(0) gives
the critical threshold for plastic nucleation.

In Dal Maso et al. (2006), Dal Maso, DeSimone, and Mora
give the first existence result for globally minimizing quasi-static
elastoplasticity for perfect plasticity, based on a discrete time mini-
mization procedure, and resulting limit as the time step goes to
zero, which is in the general framework of Mielke and Theil (2004),
Mielke et al. (2002), see also Ortiz and Repetto (1999). The mini-
mization procedure is inductive: given uin, ein, and pin (where Euin =
eindx + pin), these quantities are found at the next time step ti+1

n by
minimizing

(e, p) 	→ 1
2

∫
˝

Ce : edx +
∫
˝

H(p − pin),

subject to the new boundary conditions (or loads) at time ti+1
n .

The case of superlinear H has also been successfully studied (see,
e.g., Mielke, 2006), as in this case, there is extra compactness and
minimizers u will be in a Sobolev space rather than in BD,  and p will
be a function rather than a measure.

As we  already mentioned, the case of softening using global
minimization has required relaxation or regularization, such as in
Dal Maso et al. (2008b), which adds a viscosity term. Our view
here is that the main reason for difficulty in modeling softening
is due to global minimality. Put simply, the material “sees” that
putting in large plastic deformation will result in a relatively small
energy cost, due to softening, even though initially, as the plasticity
first began, the cost was not small, and corresponded to what was
necessary to keep � ∈ K.

We propose a new variational principle, based on locality, and
also in the spirit of the threshold formulation for damage we
introduced in Garroni and Larsen (2009). The basic idea is simply
that new plastic deformation should occur at a point only if other-
wise, the stress would leave the admissible set K (in the isotropic
scalar case, this corresponds to | ∇ u| ≤ C for some C > 0 correspond-
ing to K). This naturally leads to the idea of considering the minimal
plasticity set (in the strongest sense that is well posed), subject to
the condition that given this set, the corresponding (elastic plus
plastic) equilibrium, with plastic deformation constrained to be
within the designated plasticity set, satisfies the stress admissibility
condition.

To further motivate the formulation, we consider a one dimen-
sional quasi-static example, where u is defined on (0, L) with
boundary condition u(0) = 0 and u(L) = t, and W(·) = (1/2)| · |2. Sup-
pose further that the admissible set for elastic strain is [− 1, 1]. Our
formulation would then say that the solution u(t) is purely elastic
for all t ∈ [0, L], i.e., until | ∇ u| = 1 = ∂K, no matter how large L is, which
distinguishes it from global minimization. For t > L, our formulation
requires there to be plastic deformation somewhere, since other-
wise the stress or elastic strain would become inadmissible. We
suppose that there is plastic deformation at x = 1/3 for t > L. We  sup-
pose, of course, that u is in elasto-plastic equilibrium at every time,
i.e., for t > L,

�u  = 0 in (0,  1/3) ∪ (1/3, 1) and
∂u
∂x

=  ′([u]) at (1/3)±.

This is equivalent to minimizing

E(u) :=
∫
˝

W(∇u)dx +
∫
˝

 ([u])dHN−1 (1.1)

subject to the constraint that [u] is nonzero only in {1/3}.
Now consider the question of whether at some later time, plas-

tic deformation begins at, say, the point x = 2/3. Here we  propose
that in the case of perfect plasticity or softening, the answer should
be “no,” since if there is no plastic deformation there, the stress
threshold will not be crossed, i.e., the admissibility criterion will
still be met, since more plastic deformation can occur at x = 1/3.
So, our point of view is that, as for damage in Garroni and Larsen



Download English Version:

https://daneshyari.com/en/article/799088

Download Persian Version:

https://daneshyari.com/article/799088

Daneshyari.com

https://daneshyari.com/en/article/799088
https://daneshyari.com/article/799088
https://daneshyari.com

