Accepted Manuscript

Catalytic effect of ScCl₃ on the dehydrogenation properties of LiAIH₄

Zhijie Cao, Xiaobo Ma, Hailong Wang, Liuzhang Ouyang

PII: S0925-8388(18)31932-7

DOI: 10.1016/j.jallcom.2018.05.213

Reference: JALCOM 46189

To appear in: Journal of Alloys and Compounds

Received Date: 2 January 2018

Revised Date: 18 May 2018

Accepted Date: 19 May 2018

Please cite this article as: Z. Cao, X. Ma, H. Wang, L. Ouyang, Catalytic effect of ScCl₃ on the dehydrogenation properties of LiAlH₄, *Journal of Alloys and Compounds* (2018), doi: 10.1016/ j.jallcom.2018.05.213.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Catalytic effect of ScCl₃ on the dehydrogenation properties of LiAlH₄

Zhijie Cao^a, Xiaobo Ma^a, Hailong Wang^a, Liuzhang Ouyang^{b*}

 ^aAdvanced Energy Storage Materials and Devices Laboratory, School of Physics and Electronic-Electrical Engineering, Ningxia University, Yinchuan, 750021, PR China
^bSchool of Materials Science and Engineering, Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, South China University of Technology, Guangzhou, 510641, PR China

Abstract

The dehydrogenation properties and catalytic mechanism of ScCl₃-doped LiAlH₄ have been studied in detail. After milling for 10 min, hydrogen evolution from 5 mol% ScCl₃-doped LiAlH₄ starts at ~90 °C, superior than that of raw LiAlH₄ (~144 °C) and as-milled LiAlH₄ (~124 °C). Moreover, this composite can release a hydrogen capacity of 3.6 wt% within 180 min at 150 °C, much higher than that of as-received LiAlH₄ (1.8 wt% H₂) and as-milled LiAlH₄ (2.8 wt% H₂) under the same condition. Results show that the catalytic effect of ScCl₃ comes from the reaction product ScH₂ between LiAlH₄ and ScCl₃, which can act as the catalyst for facilitating the dehydrogenation of LiAlH₄.

Keywords: Hydrogen storage; Complex hydrides; LiAlH₄; Kinetics

*Corresponding author: Liuzhang Ouyang, E-mail: meouyang@scut.edu.cn; Fax: 86-20-87112762.

Download English Version:

https://daneshyari.com/en/article/7990926

Download Persian Version:

https://daneshyari.com/article/7990926

Daneshyari.com