Accepted Manuscript

Direct growth of MnCO₃ on Ni foil for a highly sensitive nonenzymatic glucose sensor

Chengjun Dong, You Tao, Qing Chang, Quanhui Liu, Hongtao Guan, Gang Chen, Yude Wang

PII: S0925-8388(18)31906-6

DOI: 10.1016/j.jallcom.2018.05.193

Reference: JALCOM 46169

To appear in: Journal of Alloys and Compounds

Received Date: 19 November 2017

Revised Date: 12 May 2018 Accepted Date: 17 May 2018

Please cite this article as: C. Dong, Y. Tao, Q. Chang, Q. Liu, H. Guan, G. Chen, Y. Wang, Direct growth of MnCO₃ on Ni foil for a highly sensitive nonenzymatic glucose sensor, *Journal of Alloys and Compounds* (2018), doi: 10.1016/j.jallcom.2018.05.193.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Direct growth of MnCO₃ on Ni foil for a highly sensitive nonenzymatic glucose sensor

Chengjun Dong, a,b You Tao, Qing Chang, Quanhui Liu, Hongtao Guan, A,b Gang Chen, Yude Wang A,b,*

a School of Materials Science and Engineering, Yunnan University, 650091 Kunming, People's Republic of China.

b Yunnan Province Key Lab of Micro-Nano Materials and Technology, Yunnan University, Kunming 650091, PR China

Abstract

Here, a novel MnCO₃ directly grown on Ni foil for sensitive nonenzymatic glucose detection has been fabricated by a facile hydrothermal approach. The morphologies and structures were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD). These results show that the MnCO₃ initially compacted together in particles and then formed random rods due to the mismatch between MnCO₃ and substrate. The electrochemical performance of the MnCO₃/Ni foil for glucose detection was investigated by cyclic voltammetry (CV) and chronoamperometry, which demonstrates a high sensitivity of 1254.4 μ A mM⁻¹ cm⁻² with a detection limit of 1 μ M at 0.55 V, and a fast response time of 10 s. Moreover, the MnCO₃/Ni foil electrode exhibits excellent selectivity from interfering species such as KCl, NaCl, Ascorbic acid (AA), Uric acid (UA) and Dopamine (DA). Thus, the MnCO₃ would be a promising material in nonenzymatic glucose detection.

E-mail: ydwang@ynu.edu.cn (Y. D. Wang)

^{*} To whom correspondence should be addressed. Tel:+86-871-65035570; Fax: +86-871-65035376.

Download English Version:

https://daneshyari.com/en/article/7990985

Download Persian Version:

https://daneshyari.com/article/7990985

Daneshyari.com