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a  b  s  t  r  a  c  t

We  analyse  the equilibrium  pile-up  configurations  of infinite  periodic  walls  of  edge  dislocations  which
are forced  against  an impenetrable  obstacle  by a constant  applied  shear  stress.  Numerically  generated
density  distributions  exhibit  two  distinct  regions,  for each  of  which  we provide  an  interpretation  and
an  analytical  prediction.  Near  the  obstacle,  the  influence  of  neighbouring  slip  planes  may be  neglected
and  the  classical  solution  for a  single  slip  plane  applies.  At  a larger  distance  a linear  decay  is obtained.
The  characteristic  length  scales  of the  two  parts  of the  pile-up  are  shown  to  depend  differently  on the
parameters  of the problem.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Grain boundaries, second-phase particles and other hetero-
geneities in the microstructure of polycrystalline materials have a
pronounced effect on the material’s overall inelastic response. Their
presence impedes the glide of dislocations and thus allows a smaller
amount of local plastic deformation at a certain applied stress. Het-
erogeneities in the dislocation density which thus arise are the
cause of so-called size effects, i.e. a dependence of the macroscop-
ically measured mechanical response on the spatial scale (size) of
the microstructure. A well-known example is the Hall–Petch effect
(Hall, 1951; Petch, 1953) of the average grain size on the yield
strength of a polycrystal.

These observations, among others, inspired researchers from
the mid-20th century onwards to theoretically study the pile-up
of dislocations against impenetrable obstacles (see e.g. Eshelby
et al., 1951; Leibfried, 1951; Head and Louat, 1955; Chou and
Whitmore, 1961; Chou, 1967; Pande, 1970). Due to the discrete
nature of dislocations and the stress fields emitted by them, individ-
ual dislocations of the same sign (or orientation and Burgers vector)
generally repel each other. This implies that, as some of them get
stuck at an obstacle, those that follow remain at a finite distance
from the first one and from each other. As a result, a boundary layer
is formed along the obstacle, with an increased dislocation density,
which however decays with increasing distance from the obstacle
– a pile-up.
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Many of the existing studies of pile-ups aim at characterising, or
predicting, the dislocation density profile leading up to the obsta-
cle. The earliest studies consider a linear array of edge or screw
dislocations on a single glide plane. For this case, first studied in
a discrete setting in the classical paper by Eshelby et al. (1951),
Leibfried (1951) and Head and Louat (1955) established a contin-
uous solution which essentially shows a 1/

√
x dependence of the

dislocation density on the distance x to the obstacle. Subsequent
studies of the interaction between linear pile-ups on different glide
planes, or in fact on a family of glide planes, have shown that such
interactions may  significantly influence the density profile (see e.g.
Head and Louat, 1955; Chou and Whitmore, 1961; Louat, 1963;
Chou, 1967; Pande, 1970). In particular, Louat (1963) established
an analytical density distribution for an infinite stack of linear pile-
ups of screw dislocations. This distribution differs significantly from
the classical 1/

√
x decay and shows a dependence on the spacing

of the glide planes on which the pile-ups live.
Roy et al. (2008) performed a numerical study of infinite walls

of screw and edge dislocations. For this study, infinite disloca-
tion walls piling-up against an obstacle perpendicular to their
glide planes were selected because this particular configuration
has short-range stresses only, and is thus ideally suited to exam-
ine their effect. For screw dislocations, the numerically computed
dislocation density profiles corresponded well with the analyti-
cal solution by Louat (1963). For edge dislocations, no closed-form
solution appeared to be available in the literature. In the numerical
simulations, the classical 1/

√
x decay of the dislocation density was

observed close to the obstacle, which at somewhat larger distances
transitioned into another, unknown dependence.

More recently, Hall (2011) has established, by a rigorous
discrete-to-continuum transition, that the density profile at some
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distance from the obstacle becomes linear. Numerical solutions of
the discrete problem are shown to largely follow this linear depend-
ence, apart from boundary layers at the head and tail of the pile-up.
Hall also discusses the physical relevance of the assumption that
the walls are periodic and concludes that walls are likely to emerge
on non-periodic (active) slip planes as well, but the interactions
between such non-periodic walls may  be quite different from the
periodic case.

Related studies of parallel pile-ups have been done by Baskaran
et al. (2010) and Schouwenaars et al. (2010). In particular, Baskaran
et al. (2010) studied a double-ended pile-up problem in which the
slip planes are oriented at an arbitrary angle with respect to the
obstacles. For angles other than 90◦, long-range stress fields exist
that are shown to be dominant in the formation of the pile-up. In the
“degenerate” case of exactly 90◦ no such long-range stresses exist
and the approach followed cannot be used. Schouwenaars et al.
(2010) examined the influence of various idealisations – in par-
ticular of the assumption of infinite dislocation walls and infinite
dislocation lines. They correctly argue that finite walls of disloca-
tions have long-range stress fields and that these may  overwhelm
the short-range stresses emitted by the individual dislocations – see
e.g. also Lubarda and Kouris (1996). Interestingly, they argue that
regardless of this difference the equilibrium positions are similar
for both configurations.

In this paper we return to the case of infinite walls of edge dislo-
cations piling up against a parallel obstacle considered also by Roy
et al. (2008) and by Hall (2011). We  would like to emphasise that
this case is highly idealised in many respects. Dislocation structures
encountered in real materials obviously are unlikely to be perfectly
periodic and neither are they infinite. But perhaps more impor-
tantly, in real materials multiple slip systems are available and
additional mechanisms such as cross-slip and climb may  become
active. We  nevertheless believe the idealised case of periodic single
slip is worth studying more closely for three reasons: (i) it allows
us to study the effect of short-range stresses in dislocation inter-
action in a clear, transparent setting, where it is not cluttered by
other effects (see also Roy et al., 2008); (ii) in particular, it allows
us to study the influence of mutual interaction between different
glide planes, depending on their spacing; (iii) it emphasises once
more the importance of accounting properly for the discreteness of
dislocations and their interactions (Roy et al., 2008; Hall, 2011).

The purpose of this paper is threefold. Firstly, we confirm the
linear density profile predicted by Hall (2011) via an alternative,
more heuristic route. Secondly, we show that near the obstacle this
profile transitions into the 1/

√
x dependence observed by Roy et al.

(2008) and that this “boundary layer” (in the terminology of Hall,
2011) may  thus also be described by a continuous density. And
thirdly, we show that depending on the parameters of the problem,
on of the two regimes may  be dominant, or both occur at the same
time. In the latter case, a fairly good prediction of the entire pile-up,
including the transition point between the two regions, is obtained
by combining the two analytical expressions.

The remainder of this paper is organised as follows. Section 2
defines the discrete dislocation pile-up problem which we  study
here and presents the numerical solutions which we use as a
reference throughout the paper. The two regions which can be
distinguished in the numerical data are analysed individually in
Sections 3 and 4, whereas the transition between them is discussed
in Section 5. We  close with a brief summary of conclusions in Sec-
tion 6.

2. Numerical solution of the discrete pile-up problem

We  consider the problem of a pile-up of edge dislocations
against an impenetrable obstacle, as sketched in Fig. 1. The

Fig. 1. Pile-up of vertical walls of edge dislocations in an infinite elastic medium.
The dislocation wall at x = 0 is immobile.

dislocations, denoted by ⊥ in the figure, live on an infinite number
of equally spaced slip planes at y ∈ {0, ± h, ± 2h, . . .,  ± ∞ }. The dis-
locations lines are all assumed to be straight and perpendicular to
the x–y plane. Their Burgers vectors, which are all of equal length b,
are aligned with the positive x-axis. It is furthermore assumed that
the dislocations are arranged in infinite vertical walls and that this
wall structure is preserved at all times, i.e. the dislocations within
a single wall only move collectively and uniformly. The horizontal
positions of the walls are denoted xi, where i = 0, 1, 2, . . .,  n. The first
wall is immobilised at x = x0 = 0 and acts as an obstacle for all other
walls; n thus denotes the number of mobile dislocation walls.

The system of dislocation walls is embedded in an infinite linear
elastic medium which is characterised by its shear modulus G and
Poisson’s ratio �. It is subjected to a remote, constant shear stress
−�. As a result of this applied stress and the interaction between
the individual walls, the dislocation walls form a pile-up against
the immobile wall at x = 0. We  are interested in establishing the
equilibrium pile-up configuration, i.e. the positions of the walls at
rest.

The stress field emitted by a single dislocation wall can be
obtained by summing up the classical expressions for a single dis-
location due to Volterra for all dislocations within the wall (Hirth
and Lothe, 1992). Since only the shear component contributes to the
Peach–Koehler force experienced by another dislocation and since
all glide planes within the infinite crystal considered are identical,
we limit ourselves to the shear stress acting on the glide plane at
y = 0. At the position of wall i, the stress due to the presence of wall
j equals:

�xy = Gb

h

(�/h)(xi − xj)

sinh2((�/h)(xi − xj))
(1)

wherein the elastic constant G is defined as

G = G

2(1 − �)
(2)

A given wall i, where 1 ≤ i ≤ n, reaches equilibrium when the
stress fields due to all other walls cancel the externally applied
stress, i.e. when

n∑
j=0
j /=  i

(�/h)(xi − xj)

sinh2((�/h)(xi − xj))
= �h

Gb
(3)

For the immobile wall at x = 0 to be in equilibrium, a reaction
stress equal to (n + 1)�  must be added to this equation (Eshelby et al.,
1951). However, since the position of this wall is already known,
the resulting equation can be disregarded in what follows.
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