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a  b  s  t  r  a  c  t

Modeling  of  ductile  damage  is  generally  done  using  analytical  potentials,  which  are  expressed  in  the stress
space.  In  this  paper,  for  the  first  time  it is  shown  that  strain-rate  potentials  which  are  exact  conjugate  of
the stress-based  potentials  can  be  instead  used  to model  the dilatational  response  of  porous  polycrystals.
A  new  integration  algorithm  is  also  developed.  It is  to be noted  that  a  strain-rate  based  formulation  is
most  appropriate  when  the plastic  flow of  the  matrix  is  described  by a criterion  that  involves  dependence
on  all  stress  invariants.  In such  cases,  although  a strain-rate  potential  is known,  the stress-based  potential
cannot  be  obtained  explicitly.  While  the proposed  framework  based  on  strain-rate  potentials  is  general,
for comparison  purposes  in this  work  we  present  an  illustration  of the  approach  for  the  case  of  a  porous
solid  with  von  Mises  matrix  containing  randomly  distributed  spherical  cavities.  Comparison  between
simulations  using  the  strain-rate  based  approach  and  the classical  stress-based  Gurson’s  criterion  in
uniaxial  tension  is presented.  These  results  show  that the  model  based  on  a strain-rate  potential  predicts
the  dilatational  response  with  the  same  level  of  accuracy.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Ziegler (1977) has shown that a plastic strain-rate potential can
be associated to any convex stress potential. Hence, a strain-rate
potential can be used instead of a classical stress potential to
describe the plastic response of materials. Strain-rate potentials
are more suitable for process design, especially for solving inverse
problems (e.g. Chung et al., 1997). Specifically, exact strain-rate
potentials associated to the von Mises, Hill (1948), or Cazacu et al.
(2006) criteria have been used for metal forming simulations
(e.g. Rabahallah et al., 2009a). Barlat and co-workers have also
proposed several non-quadratic anisotropic strain-rate potentials
(for a review, see Kim et al., 2007). However, at present strain-rate
potentials have been used only for the description of the plastic
response of fully dense metallic materials (void free materials).
For such materials, yielding is insensitive to the mean stress and
plastic deformation is not accompanied by any volume change.
Therefore, the associated strain-rate potentials are expressed in
terms of the deviator of the strain-rate tensor. As a consequence,
all the existing time-integration algorithms based on strain-rate
potentials make use of the hypothesis that the plastic flow is
incompressible. However, most engineering materials contain
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defects (either cracks or voids). Early on it has been recognized
that the presence of defects induces a dependence of the plastic
response on the mean stress (Rice and Tracey, 1969; Tvergaard,
1981). To model the particularities of the plastic flow of voided
polycrystals, micromechanically-motivated stress-based poten-
tials have been developed. In particular, Gurson’s (1977) is the
most widely used criterion for modeling yielding of porous metals.

In this paper, it is shown that strain-rate potentials (SRP) can be
instead used to numerically model damage–plasticity couplings.
Illustration of this approach is done by considering the strain-rate
potential which is the exact conjugate of Gurson’s (1977) stress-
based potential for porous solids containing randomly distributed
spherical voids. The structure of the paper is as follows. After a
brief presentation of the kinematic homogenization approach of
Hill-Mandel (Hill, 1967; Mandel, 1972), we recall Gurson’s (1977)
analysis and give the expression of the associated SRP (Section 2).
The governing equations for an elastic-plastic damage model based
on this SRP and the proposed time-integration algorithm are pre-
sented in Section 3. The developed algorithm is implemented in the
FE code Abaqus/Standard as a user material subroutine (UMAT). For
validation purposes, simulations of single-element uniaxial tension
using the Abaqus built-in model and the developed UMAT are pre-
sented. Furthermore, in order to demonstrate the ability of the new
SRP-based model to predict the salient features of ductile damage,
an analysis of void volume fraction evolution in a notched ten-
sile bar is conducted. Regarding notations, vectors and tensors are
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denoted by boldface characters. If A and B are second-order tensors,
the contracted tensor product between such tensors is defined as:
A:B = AijBij, i, j = 1. . .3. The norm of A is defined as

∥∥A
∥∥ =

√
A : A; tr

denotes the trace of the tensor.

2. Modeling framework

Generally, the onset of plastic flow is described by specifying a
convex yield function, ϕ(�), in the stress space and the associated
flow rule

Dp = �̇ ∂�
∂�

(1)

where � is the Cauchy stress tensor, DP denotes the plastic strain-
rate tensor and �̇≥0 stands for the plastic multiplier. The yield
surface is defined as ϕ(�) = �, where � is a positive scalar with the
dimension of stress. Generally, � is taken as the uniaxial yield in ten-
sion, �T. The dual potential of the stress potential ϕ(�) is defined
(see Ziegler (1977), Hill (1987)) as:

 (Dp) = �̇,  (2)

and

� = �T
∂ 

∂Dp (3)

The yield function ϕ(�) is generally taken homogeneous of
degree one with respect to positive multipliers, so

Ẇp = sup
� ∈ C

(�ijD
p
ij
) = �̇�T , i, j = 1. . .3, (4)

where C  is the convex domain delimited by the yield surface, and
Ẇp is the work rate associated with the plastic strain-rate tensor
DP. Thus, � (DP) is a work-equivalent measure of the strain-rate.
The functions � (DP) and ϕ(�) are dual potentials. For example,
in the case of von Mises potential (i.e. ϕ(�) =

√
(3/2)�′ : �′), the

associated SRP is:  (Dp) =
√

(2/3)Dp : Dp = ˙̄ε,  where ˙̄ε denotes
the von Mises equivalent strain-rate and �′ the stress deviator.

2.1. Plastic potentials for porous metallic materials

The kinematic homogenization approach of Hill–Mandel (Hill,
1967; Mandel, 1972) offers a rigorous framework for the develop-
ment of criteria for describing the plastic response of porous solids.
If the matrix is rigid-plastic, it has been shown (e.g. Talbot and
Willis, 1985) that there exists a strain-rate potential  ̆ = ˘(Dp, f)
such that the stress at any point in the porous solid is given by:

� = ∂˘(Dp, f )
∂Dp with ˘(Dp, f ) = inf

d ∈ K(D)

〈

(d)

〉
˝

(5)

where  ̋ is a representative volume element composed of the
matrix and a traction-free void, while 〈〉 denotes the average value
over ˝;  f is the porosity (ratio between the volume of the void and
the volume of ˝); 
(d) is the matrix’s plastic dissipation with d
being the local plastic strain-rate tensor. Minimization is done over
K(D), which is the set of incompressible velocity fields compatible
with homogeneous strain-rate boundary conditions, i.e.

v = Dx for any x ∈ ∂� (6)

Only very few velocity fields compatible with uniform strain-
rate boundary conditions are known. For example, for spherical
void geometry the only known velocity fields are those deduced by
Rice and Tracey (1969) and Budyanski et al. (1982). For examples of
other velocity fields deduced using an Eshelby-type approach, the
reader is referred to Monchiet et al. (2011). Furthermore, in order
to arrive at closed-form expressions, the local plastic dissipation is
calculated for a unique velocity field. Thus, the associated overall

potential is an upper-bound of the exact plastic dissipation of the
porous solid. However, only in the case when the plastic behavior
of the matrix is described by simple expressions (e.g. von Mises,
Hill, 1948), it is possible to arrive at a closed-form expression of
the approximate stress-based plastic potentials of the porous solid
(e.g. Gurson, 1977; Monchiet et al., 2008, respectively). If the plas-
tic flow of the matrix is described by a criterion involving all stress
invariants, e.g. Tresca criterion, an approximate SRP can be deduced
(see Appendix A); however, a closed-form stress-based criterion
can be obtained only in parametric form (see Cazacu et al., 2013).
Furthermore, integration algorithms exist only for stress-based for-
mulations of coupled elasto-plastic damage behavior (e.g. Aravas,
1987). Although all the numerical methods and techniques devel-
oped in this paper are valid for an elasto-plastic damage model
described by a general strain-rate potential  ̆ = ˘(Dp, f) in its gen-
eral form, in this paper we  discuss a specific strain-rate potential
which is the exact conjugate of Gurson’s (1977) stress potential for
spherical cavities. Let us recall that the analysis of Gurson (1977)
was done on a hollow-sphere, its rigid-plastic behavior being gov-
erned by the von Mises yield criterion. The local plastic dissipation
was calculated using the velocity field deduced by Rice and Tracey
(1969). The approximate strain-rate potential obtained is:

�
(

Dp, f
)

= 2
∣∣Dpm∣∣

[√
1 + u2 −

√
f 2 + u2

u

+ ln

(
u +
√
f 2 + u2

u +
√

1 + u2

1
f

)]
, (7)

where f denotes the porosity (or void volume fraction),

u = 2
(∣∣Dpm∣∣/Dpe), with Dpm = (tr Dp)/3 and Dpe =

√
(2/3)D′p : D′p

Hence, at yielding:

�m
�T

= 1
3

∂�
(

Dp, f
)

∂Dpm
= 2

3
ln

(
u +
√
u2 + f 2

u +
√
u2 + 1

· 1
f

)
, (8a)

�e
�T

=
∣∣∣∣∣∂�

(
Dp, f

)
∂Dpe

∣∣∣∣∣ =
√

1 + u2 −
√
u2 + f 2, (8b)

where �m = tr(�)/3 and �e =
√

(3/2)�′ : �′. The parameter u can
be eliminated between Eq. (8a) and (8b), to arrive at the classical
stress-based formulation (for details, see Gurson, 1977):

˚ (�, f ) =
(
�e
�T

)2
+ 2f cosh

(
3�m
2�T

)
− 1 − f 2. (9)

As an example, in Fig. 1(a) is shown the representation of the
strain-rate potential (7) for different initial porosities f = 0.001,
f = 0.01, and f = 0.1, respectively, while in Fig. 1(b) are shown iso-
contours of its exact dual, i.e. Gurson’s stress potential (Eq. (9))
for the same porosities. The porous material being isotropic, the
principal directions of Dp and stress coincide. The projection of the
strain-rate potential in the octahedral plane (plane with normal at
equal angles to the principal directions of the strain-rate tensor Dp)
is shown in Fig. 2(a) while Fig. 2(b) depicts the section of Gurson’s
(1977) stress potential.

3. Time-integration algorithm for a general elastic–plastic
damage model based on a strain-rate plastic potential

In the following we present the governing equations for an
elastic-plastic damage model based on a strain-rate potential and a
general time-integration algorithm. The total rate of deformation is
considered to be the sum of an elastic part and a plastic part Dp. The
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