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a  b  s  t  r  a  c  t

A  new  computational  framework  is  proposed  for the  form-finding  and  design  of tensegrity  structures
with  or  without  super-stability.  The  form-finding  of tensegrities  is  formulated  as  two  unconstrained
minimisation  problems  where  their  objective  functions  are  defined  based  on  eigenvalues  of  a  modified
force  density  matrix.  The  Nelder–Mead  simplex  method  is  then  used  to  solve  the  minimisation  problems.
Furthermore,  another  efficient  method  is  suggested  for the interactive  form-finding  and  design  of  tenseg-
rities with  geometrical  and  force  constraints.  Examples  of  the  form-finding  of  tensegrities  are  presented
and  the  results  obtained  are  compared  and  contrasted  with  those  analytical  results  documented  in the
literature,  to verify  the  accuracy  and efficiency  of  the  developed  methods.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Tensegrities are pin-jointed, self-equilibrated frameworks com-
posed of a set of discontinuous compressive elements (struts)
floating within a net of continuous tensile elements (cables) with
an extensive range of important and novel applications in, for
instance, deployable aerospace structures (Tibert and Pellegrino,
2002), architectural and structural design (Motro, 2003; Rhode-
Barbarigos et al., 2010), biomechanics (Luo et al., 2008), smart
systems (Moored et al., 2011) and advanced engineering materials
(Fraternali et al., 2012).

Unlike the regular structures of which the geometries are gener-
ally known, tensegrity structures need to be pre-stressed and have
a special geometry in order to be stable. The process of determin-
ing a suitable pre-stress pattern and its corresponding geometry is
called form-finding. Form-finding of tensegrity structures is usually
performed through analytical and numerical methods—the numer-
ical methods are more practical for large and irregular tensegrities,
while the analytical methods are suitable for tensegrities with a
high order of symmetry. Numerical form-finding of tensegrities has
been widely studied using different methods. A brief review is given
below.

Form-finding of tensegrities has been studied by Motro (1984),
employing the dynamic relaxation method. Pellegrino (1986)
offered a nonlinear programming approach to the form-finding
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problem. Masic et al. (2005) developed an algebraic method, based
on invariant tensegrity transformations, for the form-finding prob-
lem. A finite element approach to the form-finding of tensegrity
structures has been presented by Pagitz and Mirats Tur (2009).
Estrada et al. (2006), Zhang and Ohsaki (2006) and Tran and Lee
(2010, 2013) proposed numerical methods for the form-finding of
tensegrity structures that employ either iterative eigenvalues or
singular value decompositions of the force density and equilibrium
matrices. Koohestani and Guest (2013) developed a new platform
for the analytical and numerical form-finding of tensegrities, which
effectively uses singular value decompositions of equilibrium and
compatibility equations. Form-finding of irregular tensegrities has
been presented by Li et al. (2010), using the Monte Carlo method.
Rieffel et al. (2009) introduced a special evolutionary form-finding
method, Koohestani (2012), Paul et al. (2005) and Xu and Luo
(2010) used genetic algorithms and Chen et al. (2012a,b) used
ant colony systems for the form-finding of tensegrities. Ehara and
Kanno (2010) and Kanno (2011, 2012) used mixed integer program-
ming for the form-finding and optimisation of tensegrity structures
under different constraints, including discontinuity of struts, com-
pliance, stress and self-weight loads.

In this paper, an unconstrained optimisation approach is pro-
posed for the form-finding of tensegrity structures. The methods
effectively employ spectral decomposition of the force density
matrix to directly form tensegrities with or without super-stability.
The method requires only connectivity data and a random set of
force densities for initialisation, enabling us to form a wide variety
of tensegrities with different geometrical and mechanical charac-
teristics. The Nelder–Mead simplex method is used throughout as a
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Fig. 1. A typical node of a tensegrity structure.

gradient-free optimiser. Also, an efficient method is introduced for
the interactive geometrical and force design of tensegrities. Finally,
the viability and efficiency of the methods suggested are studied
through some examples of well-known tensegrities.

2. Force density method (FDM)

The FDM, first introduced by Schek (1974), is widely used in the
form-finding of tensegrity structures. In this method, equilibrium
equations of a tensegrity are written based on the force density
of elements and nodal coordinates, leading to a system of linear
equations for a known or prescribed set of force densities (for an
unknown set of force densities and nodal coordinates, the system
is clearly nonlinear). The coefficient matrix of this system of equa-
tions, known as the force density matrix is the key object in the
study of the stability of tensegrity structures. The force density
matrix is also effectively used within our form-finding methods.
The formulation is provided briefly, as follows.

In Fig. 1, a typical node (node i) of a 3-dimensional tensegrity
is shown. This node is assumed to be connected to the other three
nodes (nodes j, k and l) through three elements. Eqs. (1)–(3) provide
the static equilibrium equations for node i.

fij(xi − xj)
Lij

+ fik(xi − xk)
Lik

+ fil(xi − xl)
Lil

= pix (1)

fij(yi − yj)
Lij

+ fik(yi − yk)
Lik

+ fil(yi − yl)
Lil

= piy (2)

fij(zi − zj)
Lij

+ fik(zi − zk)
Lik

+ fil(zi − zl)
Lil

= piz (3)

Here, fij and Lij are force and length of element (i, j), respectively.
Furthermore, (xi, yj) and zi are Cartesian coordinates of node i,
whilst pix, piy and piz are external forces at node i. Eq. (1) is now
simplified using the definition of force density for an element, as
follows:

(qij + qik + qil)xi − qijxj − qikxk − qilxl = pix

where qij = fij/Lij , qik = fik/Lik and qil = fil/Lil are the force density
of elements. Eqs. (2) and (3) can similarly be represented, based on
the definitions of the force densities. These equations can be written
for all nodes and integrated to form the equilibrium equations of
the entire structure, as given in Eq. (4).

G[x y z] = [px py pz] (4)

In Eq. (4), x = [x1, x2, . . .,  xn]t , y = [y1, y2, . . .,  yn]t and
z = [z1, z2, . . .,  zn]t are vectors of nodal coordinates, whilst
px = [p1x, p2x, . . .,  pnx]t , py = [p1y, p2y, . . .,  pny]t and pz =
[p1z, p2z, . . .,  pnz]t are vectors of external nodal forces in the
x-, y- and z-directions, respectively. Moreover, G ∈ Rn×n is known
as the force density matrix which, for a tensegrity with n nodes,

is a symmetric n-dimensional matrix and can be represented as
follows:

G = BQBt (5)

where Q = diag(q), q = [q1, q2, . . .,  qm]t is the matrix of force den-
sities which, for a tensegrity with m elements, is a diagonal m × m
matrix. Also, B = [bij]n×m

is the node-element incidence matrix and
is defined as:

bij =

⎧⎨
⎩

−1 if i is the start node of element j

1 if i is the end node of element j

0 otherwise

(6)

Note that from the graph-theoretical point of view G is, in fact, the
Laplacian matrix of a directed weighted graph, where each typi-
cal edge (i, j) is directed from node i to j(i < j) and its weight is qij.
Furthermore, the rank of G, is at most, n − 1 (independent of the
numerical values of the force densities), since the sum of all its rows
and columns is zero. Eq. (4) describes the equilibrium equations of
a 3-dimensional tensegrity structure to which the external forces
have been applied. However, in the form-finding, we  are interested
in the case where the structure has a state of self-stress with no
external loads applied; therefore:

G[x y z] = [0 0 0] (7)

In general, for a 3-dimensional structure in a state of self-stress,
Eq. (7) must have at least three independent solutions. However,
because of the intrinsic rank deficiency of G, there is always a trivial
solution, which is a vector of ones. Thus, the minimum rank defi-
ciency of G for a d-dimensional tensegrity is d + 1. This also means
that G must have at least d + 1 zero eigenvalues. In the next sec-
tions, this feature of the force density matrix is effectively used to
formulate our form-finding methods.

3. Stability of tensegrity structures

Tensegrity structures usually exhibit two different forms of sta-
bility. The first type of stability, which is called super-stability, is
independent of the level of self-stress and type of material in the
tensegrity. In general, a d-dimensional tensegrity structure needs to
satisfy the following three conditions to be the super-stable (Zhang
and Ohsaki, 2007).

(a) The force density matrix G has the minimum rank deficiency
d + 1.

(b) G is semi-positive definite.
(c) The rank of the geometry matrix, denoted by GE,  is d (d + 1)/2

or, equivalently, the member directions do not lie on the same
conic at infinity (Connelly, 1982).

Note that the geometry matrix is defined as

GE = [Dxdx Dydy Dzdz Dxdy Dxdz Dydz] (8)

where dx = Btx, dy = Bty and dz = Bt
z are Cartesian components

of the length of elements, Dx = diag(dx), Dy = diag(dy) and Dz =
diag(dz).

It is useful to note that the first two conditions above play a
crucial role in the study of the stability of tensegrity structures,
since the third condition is usually satisfied (Zhang and Ohsaki,
2012).

A tensegrity that does not meet above conditions is not super-
stable but may  still be stable. However, for these cases, the stability
can be investigated based on a pre-stress/stiffness ratio of elements
and spectral characteristics of the tangent stiffness matrix (sum
of the linear elastic stiffness and geometrical stiffness matrices).
The reader may  refer to Ohsaki and Zhang (2006) for the necessary
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