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a  b  s  t  r  a  c  t

We  examine  the effect  of  surface  energy  on  an anisotropic  elastic  material  weakened  by an  ellipti-
cal  hole.  A  closed-form,  full-field  solution  is  derived  using  the  standard  Stroh  formalism.  In particular,
explicit  expressions  for the  hoop  stress,  normal,  in-plane  tangential  and  out-of-plane  displacement  com-
ponents  along  the  edge  of  the  hole  are  obtained.  These  expressions  clearly  demonstrate  the  effect of
elastic  anisotropy  of  the  bulk  material  on  the corresponding  field  variables.  When  the  material  becomes
isotropic,  the  hoop  stress  agrees  with  the  well-known  result  in  the  literature  while  both  the in-plane
tangential  and out-of-plane  displacements  vanish  and  the  normal  displacement  is  constant  along  the
entire  boundary  of  the  elliptical  hole.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The analysis of an elastically isotropic or anisotropic solid weak-
ened by an elliptical hole is of great practical importance and has
been the subject of extensive discussion in the literature (see, for
example, Timoshenko and Goodier, 1970; England, 1973; Hwu  and
Ting, 1989; Wang and Wang, 2006). Traditional modeling attempts
(Timoshenko and Goodier, 1970; England, 1973; Hwu  and Ting,
1989) have made the assumption that the surface of the ellip-
tical hole is traction-free. Consequently the obtained results are
size-independent and cannot explain the experimentally observed
size-dependent phenomenon in structures at the nano-scale which
exhibit high surface-to-volume ratios. Recently, Wang and Wang
(2006) analyzed the problem of an elliptical hole with surface
energy in an isotropic elastic solid by using the surface elastic-
ity theory originally proposed by Gurtin and Murdoch (1975) and
Gurtin et al. (1998) and by using Muskhelishvili’s complex vari-
able formulation (Muskhelishvili, 1953). Wang and Wang (2006)
observed that when the size of the hole reduces to the order of
the ratio of surface energy to applied stress, the contribution from
surface energy becomes significant. Recently, surface elasticity the-
ory has also been incorporated in the study of Eshelby’s inclusion
problem (Sharma and Ganti, 2004), the inhomogeneity problem
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(Sharma et al., 2003; Duan et al., 2005; Yang, 2006; Chen et al.,
2007), the spherical cavity problem (Yang, 2004) and the crack
problem (Kim et al., 2010, Kim et al., 2011; Walton, 2012).

The bulk materials studied in Wang and Wang (2006), Sharma
and Ganti (2004), Sharma et al. (2003), Duan et al. (2005); Yang
(2006), Chen et al. (2007), Yang (2004), Kim et al. (2010), Kim et al.
(2011) and Walton (2012), incorporating surface elasticity were
predominantly assumed to be elastically isotropic. In this work, we
endeavor to make a rigorous study of an elliptical hole with surface
energy in a general anisotropic material by using the Stroh formal-
ism (Ting, 1996). It is interesting to note that the Stroh formalism
continues to provide a powerful and elegant method to treat non-
standard boundary value problems including the one studied here.

2. Basic formulation

2.1. The Stroh formalism

The equilibrium equations and the stress–strain law for a linear
anisotropic elastic material are given by

�ij,j = 0, �ij = Cijkluk,l, (1)

where ui and �ij are, respectively, the components of displacement
and stress while Cijkl are the elastic stiffnesses. Here, we  adopt the
convention of summation over repeated indices and a comma  fol-
lowed by a subscript, for example, i (i = 1,2,3) denotes the derivative
with respect to the ith spatial coordinate;
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For two-dimensional problems in which all quantities depend
only on the plane coordinates x1 and x2, the general solution can
be expressed as (Ting, 1996)

u =
[
u1 u2 u3

]T = Af(z) + Āf(z),

� =
[
˚1 ˚2 ˚3

]T = Bf(z) + B̄f(z),
(2)

where

A =
[

a1 a2 a3
]
, B =

[
b1 b2 b3

]
,

f(z) =
[
f1(z1) f2(z2) f3(z3)

]T
,

zi = x1 + pix2, Im
{
pi
}
> 0, (i = 1, 2, 3),

(3)

with[
N1 N2

N3 NT1

]  [
ai

bi

]
= pi

[
ai

bi

]
, (i = 1, 2, 3) (4)

N1 = −T−1RT , N2 = T−1, N3 = RT−1RT − Q, (5)

and

Qik = Ci1k1, Rik = Ci1k2, Tik = Ci2k2. (6)

The stress function vector � is defined, in terms of the stresses, as
follows

�i1 = −˚i,2, �i2 = ˚i,1, (i = 1, 2, 3) (7)

Due to the fact that the two matrices A and B satisfy the following
normalized orthogonal relationship (Ting, 1996)[

BT AT

B̄
T

Ā
T

][
A Ā

B B̄

]
= I, (8)

the following three real Barnett–Lothe tensors S, H and L can be
introduced (Ting, 1996)

S = i(2ABT − I), H = 2iAAT , L = −2iBBT (9)

Furthermore, the two matrices H and L are symmetric and pos-
itive definite, while SH,  LS,  H−1S, SL−1 are anti-symmetric.

In dual coordinate systems (Ting, 1996) where the displacement
ui is referred to the coordinate system x1, x2 while the indepen-
dent variables are referred to a rotated coordinate system: x∗

1 =
x1 cos � + x2 sin � and x∗

2 = −x1 sin � + x2 cos �, we have the follow-
ing eigenrelation (Ting, 1996):[

N1(�) N2(�)

N3(�) NT1(�)

][
ai

bi

]
= pi(�)

[
ai

bi

]
, (i = 1, 2, 3),  (10)

where

N1(�) = −T−1(�)RT (�),

N2(�) = T−1(�), N3(�) = R(�)T−1(�)RT (�) − Q(�),
(11)

pi(�) = pi cos � − sin �

pi sin � + cos �
. (12)

Furthermore Q(�), R(�) and T(�) in Eq. (11) can be expressed as

Q(�) = Q cos2 � + (R + RT ) sin � cos � + T sin2 �,

R(�) = R cos2 � + (T − Q) sin � cos � − RT sin2 �,

T(�) = T cos2 � − (R + RT ) sin � cos � + Q sin2 �.

(13)

2.2. Surface elasticity

The incorporation of surface elasticity (Wang and Wang, 2006;
Yang, 2006, 2004) leads to the following relation between the
(2 × 2) symmetric surface stress tensor �s

˛ˇ
and the deformation-

dependent surface energy �:

�s˛ˇ = �ı˛ˇ + ∂�

∂ε˛ˇ
. (14)

Here, ε˛ˇ is the surface strain tensor and ı˛ˇ the Kronecker delta.
In this study, we  consider only the case in which the surface energy
is independent of the elastic strain. This simplification has been
adopted by several authors in the literature (see, for example, Wang
and Wang, 2006). In doing so, we  fully recognize the importance of
the strain-dependent contribution to the surface stress in Eq. (14).
However, in this paper, we are motivated by an analytical solu-
tion of the corresponding problems and our investigations show
that such a solution is not available in this more general setting
of anisotropic elasticity if we include both the residual (strain-
independent) and surface elastic (strain-dependent) contributions
to Eq. (14). Nevertheless, as we demonstrate below, interesting
phenomena continue to be observed from this simplified model.
Consequently, Eq. (14) now reduces to

�s˛ˇ = �ı˛ˇ, (15)

which implies that the surface is isotropic (Yang, 2006, 2004).
Using the concept of surface stress, the boundary condition on

the surface is given by (Gurtin and Murdoch, 1975; Gurtin et al.,
1998; Kim et al., 2011; Ru, 2010)

�˛jnje˛ + �s
˛ˇ,ˇ

e˛ = 0, (tangential direction)

�ijninj = �s
˛ˇ
�˛ˇ, (normal direction)

(16)

where ni is the unit normal vector of the surface, and �˛ˇ is the
curvature tensor of the surface.

3. An anisotropic material weakened by an elliptical hole in
the presence of surface energy

We  consider an elliptical hole with surface energy in an infi-
nite anisotropic elastic material. At first we assume that the elastic
field is completely induced by surface stress in the absence of
external loading. The boundary of the elliptic hole is described by

� :
{
x2

1
a2 + x2

2
b2 = 1

}
. In order to solve the boundary value problem,

we consider the following mapping functions (Ting, 1996)

z˛ = x1 + p˛x2 = ω˛(
˛) = a  − ip˛b

2

˛ + a + ip˛b

2
˛
, (  ̨ = 1, 2, 3)

(17)

which map  the outside of an elliptical region in the z�-plane onto
the outside of the unit circle

∣∣
˛∣∣≥1 in the ��-plane. Meanwhile we
consider the mapping function (Muskhelishvili, 1953):

z = x1 + ix2 = ω(
) = R
(

 + m




)
, (18)

where

R = a + b

2
, m = a − b

a + b
. (19)

Due to the fact that on the elliptical surface � , we have

1 = 
2 = 
3 = 
, then we  can first replace 
˛ by the common vari-
able 
. After the analysis is complete, the complex variable 
 will
revert back to the corresponding complex variables 
˛, (  ̨ = 1, 2, 3).
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