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a  b  s  t  r  a  c  t

In this  paper  the  double-inclusion  model,  originally  developed  to determine  effective  linear  elastic
properties  of  composite  materials,  is reformulated  and  extended  to  predict  the  effective  nonlinear
elastic–plastic  response  of  two-phase  particulate  composites  reinforced  with  spherical  particles.  The
resulting  problem  of  elastic–plastic  deformation  of  a double-inclusion  embedded  in  an  infinite  reference
medium  subjected  to an incrementally  applied  far-field  strain  is  solved  by the  finite  element  method.  The
proposed  double-inclusion  model  is  evaluated  by comparison  of the  model  predictions  to  the  available
exact  results  obtained  by the  direct approach  using  representative  volume  elements  containing  many
particles.  It  is  found  that  the  double-inclusion  formulation  is capable  of  providing  accurate  prediction  of
the effective  elastic–plastic  response  of two-phase  particulate  composites  at moderate  particle  volume
fractions.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Prediction of the effective elastic–plastic response of particu-
late composite materials consisting of brittle particles and ductile
matrix, such as metal matrix composites reinforced with ceramic
particles, is an important and active research topic (see, e.g., Pierard
et al., 2007). Result of prediction is often presented in the form
of stress–strain relation under some simple loading, say, simple
tension or pure shear.

Existing methods for predicting the elastic–plastic response of
composite materials include the secant homogenization method
(Tandon and Weng, 1988), incremental homogenization method
based on the Mori–Tanaka model (Doghri and Quaar, 2003), direct
approach using representative volume elements (RVEs) (Gonzalez
et al., 2004), and periodic unit cell method (Bao et al., 1991).
The secant method is limited to monotonic and proportional
loading. The incremental homogenization method has no such
limitation and can be applied to load reversal or cyclic load. How-
ever, in its original form the incremental approach over-predicts
elastic–plastic stress–strain response, and the remedy is to use only
the isotropic part of the anisotropic elastic–plastic tangent stiff-
ness tensor (Doghri and Quaar, 2003). However, the use of only
the isotropic part of the tangent stiffness tensor, while resulting
in much improved prediction, lacks either theoretical or physical
basis. In addition, fitting parameters may  be needed in formulating
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the isotropic part of the tangent stiffness tensor (Delannay et al.,
2007). It is well known that for a particulate composite with its
matrix material characterized by the von Mises yield condition
(the theory of J2 plasticity), reinforced with homogeneous, isotropic
and linearly elastic particles, the composite as a whole may  yield
under hydrostatic stress even though the matrix does not (Chu and
Hashin, 1971; Qiu and Weng, 1992; Sun and Ju, 2001). One some-
what overlooked fault of the incremental Mori–Tanaka method is
its inability to predict the yield of such a composite under hydro-
static stress when the particles are spherical. The direct approach
using RVEs gives rigorous prediction of the effective composite
elastic–plastic response, but is computationally expensive, partic-
ularly given the nonlinear nature of plastic deformation. The unit
cell method applies to composites with periodic microstructures.
It cannot be rigorously applied to real composites which in general
are not periodic. Because of its simplicity the unit cell method is
nonetheless often used to approximate the elastic–plastic behav-
ior of real composites (Farrissey et al., 1999; LLorca and Segurado,
2004). In addition to the aforementioned methods, Sun and Ju
(2004) applied the ensemble averaging approach to the prediction
of the effective elastic–plastic response of particulate composites.
However, their method invariably predicts isotropic hardening,
and therefore is unable to account for the Bauschinger effect. In
this study, the double-inclusion model, originally developed by
Hori and Nemat-Nasser (1993) to determine effective linear elas-
tic properties of composite materials (also see Aboutajeddine and
Neale, 2005), is reformulated and extended to predict the effec-
tive elastic–plastic response of two-phase particulate composite
materials.
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Fig. 1. The double-inclusion model with the origin of the Cartesian coordinate sys-
tem (x1, x2, x3) at the center of the particle.

It should be mentioned that the majority of published results
for elastic–plastic stress–strain relations of composite materials are
those under monotonically increasing uniaxial tension. Composite
materials in general exhibit the Bauschinger effect even though the
constituent materials undergo only isotropic strain hardening. To
characterize the Bauschinger effect, it is necessary to determine
stress–strain relation under a loading path that includes loading
in tension followed by unloading and reverse loading in compres-
sion.

2. Formulation

Consider a particle-reinforced composite material. It is assumed
that the particles are spherical, the particles and the matrix are
homogeneous, isotropic and elastic–plastic, and the particles and
the matrix are perfectly bonded at their interface. Small defor-
mation is also assumed. To determine the effective elastic–plastic
response of the composite, one can consider the elastic–plastic
deformation of a representative volume element of the composite
under continued loading by means of boundary surface displace-
ment or traction. Define a Cartesian coordinate system (x1, x2, x3) in
connection with the representative volume element. At t = 0, where
t is time (or more precisely a time-like monotonically increasing
variable), the composite is in the initial undeformed configuration.
At t the composite representative volume element is subjected to a
boundary surface displacement u0

i
or traction T0

i
, and the boundary

displacement or traction at t + dt with dt > 0 can then be writ-
ten as u0

i
+ du0

i
or T0

i
+ dT0

i
(i = 1, 2, 3),  where du0

i
or dT0

i
is the boundary displacement increment or traction increment at
t. The stress in the composite at t is denoted by �ij and the strain
by εij (i, j = 1,2,3). The stress in the composite at t + dt is denoted by
� ′

ij
= �ij + d�ij and the strain by ε′

ij
= εij + dεij , where d�ij and dεij

are the stress and strain increment, respectively, resulting from the
boundary displacement increment du0

i
or traction increment dT0

i
.

The strain in the composite at t + dt is then given by

ε′
ij =

t+dt∫

0

dεij (1)

where the integral is taken over the strain path. The volume average
strain increment of the composite is given by

dε̄ij = 1
V

∫
V

dεijdV (2)

where V is the volume of the composite RVE. The average strain of
the composite at t + dt is defined as

ε̄′
ij =

t+dt∫

0

dε̄ij (3)

where the integration is taken over the given strain path.
The volume average stresses of the composite �̄ij and �̄ ′

ij
at t and

t + dt,  respectively, are defined as follows.

�̄ij = 1
V

∫
V

�ijdV (4a)

�̄ ′
ij = 1

V

∫
V

� ′
ijdV (4b)

The average stress increment is d �̄ij = �̄ ′
ij

− �̄ij.

The yield criterion of either the particle or matrix material of the
composite is expressed in the form f(�ij) = 0, where f(�ij) ≡ f(�11,
�12, �13, �21, �22, �23, �31, �32, �33) is the yield function. If a
constituent material of the composite obeys the von Mises yield cri-
terion with isotropic strain hardening, the yield function is given
by f (�ij) = �eq − Y(εp

eq), where �eq is the equivalent stress of the

constituent material defined as �eq = (3/2 sij sij)
1/2, with sij being

the deviatoric stress, and εp
eq is the equivalent plastic strain of

the constituent material defined by the integral εp
eq =

∫
dεp

eq over

the strain path, with dεp
eq = (2/3 dεp

ij
dεp

ij
)
1/2

being the equivalent
plastic strain increment. Note that a repeated index indicates sum-
mation.

To determine the effective elastic–plastic response of the par-
ticulate composite, let the representative volume element be
subjected to a boundary surface displacement, with the boundary
surface displacement increment at t being a homogeneous dis-
placement increment given by du0

i
= dε0

ij
xj(i, j = 1, 2, 3), where xi

are the (Cartesian) coordinates of a material point on the bound-
ary surface of the RVE at t, and dε0

ij
is a uniform strain increment.

Note that dε0
ij

can be different at different time t. The volume aver-

age strain increment of the composite then becomes dε̄ij = dε0
ij
. The

average strain of the composite at t + dt is given by

ε̄′
ij =

t+dt∫

0

dε0
ij (5)

Therefore, the average strain of the composite can be deter-
mined simply by integrating the applied uniform strain increment
dε0

ij
over the prescribed strain path. With the direct approach the

corresponding average stress can be found in principle by solv-
ing the stress field in the representative volume element by using,
say, the finite element method. Given the nonlinear nature of
elastic–plastic deformation and that a representative volume ele-
ment usually contains a large number of particles, the solution
of the stress field is a computationally formidable problem. An
alternative to the direct approach is to evaluate the volume aver-
age stress of the composite using micromechanics homogenization
models, for example, the incremental Mori–Tanaka model. In this
paper a new approach based on the double-inclusion model is
proposed to determine the effective elastic–plastic response of a
particulate composite.



Download English Version:

https://daneshyari.com/en/article/799128

Download Persian Version:

https://daneshyari.com/article/799128

Daneshyari.com

https://daneshyari.com/en/article/799128
https://daneshyari.com/article/799128
https://daneshyari.com

